| Step |
Hyp |
Ref |
Expression |
| 1 |
|
m2detleiblem1.n |
|- N = { 1 , 2 } |
| 2 |
|
m2detleiblem1.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
| 3 |
|
m2detleiblem1.y |
|- Y = ( ZRHom ` R ) |
| 4 |
|
m2detleiblem1.s |
|- S = ( pmSgn ` N ) |
| 5 |
|
m2detleiblem1.o |
|- .1. = ( 1r ` R ) |
| 6 |
|
m2detleiblem1.i |
|- I = ( invg ` R ) |
| 7 |
|
1ex |
|- 1 e. _V |
| 8 |
|
2nn |
|- 2 e. NN |
| 9 |
|
prex |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. _V |
| 10 |
9
|
prid2 |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
| 11 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
| 12 |
11 2 1
|
symg2bas |
|- ( ( 1 e. _V /\ 2 e. NN ) -> P = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
| 13 |
10 12
|
eleqtrrid |
|- ( ( 1 e. _V /\ 2 e. NN ) -> { <. 1 , 2 >. , <. 2 , 1 >. } e. P ) |
| 14 |
7 8 13
|
mp2an |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. P |
| 15 |
|
eleq1 |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( Q e. P <-> { <. 1 , 2 >. , <. 2 , 1 >. } e. P ) ) |
| 16 |
14 15
|
mpbiri |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> Q e. P ) |
| 17 |
1 2 3 4 5
|
m2detleiblem1 |
|- ( ( R e. Ring /\ Q e. P ) -> ( Y ` ( S ` Q ) ) = ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) ) |
| 18 |
16 17
|
sylan2 |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( Y ` ( S ` Q ) ) = ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) ) |
| 19 |
|
fveq2 |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( ( pmSgn ` N ) ` Q ) = ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
| 20 |
19
|
adantl |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( ( pmSgn ` N ) ` Q ) = ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
| 21 |
|
eqid |
|- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
| 22 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
| 23 |
1 11 2 21 22
|
psgnprfval2 |
|- ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) = -u 1 |
| 24 |
20 23
|
eqtrdi |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( ( pmSgn ` N ) ` Q ) = -u 1 ) |
| 25 |
24
|
oveq1d |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) = ( -u 1 ( .g ` R ) .1. ) ) |
| 26 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
| 27 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 28 |
27 5
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
| 29 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
| 30 |
27 29 6
|
mulgm1 |
|- ( ( R e. Grp /\ .1. e. ( Base ` R ) ) -> ( -u 1 ( .g ` R ) .1. ) = ( I ` .1. ) ) |
| 31 |
26 28 30
|
syl2anc |
|- ( R e. Ring -> ( -u 1 ( .g ` R ) .1. ) = ( I ` .1. ) ) |
| 32 |
31
|
adantr |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( -u 1 ( .g ` R ) .1. ) = ( I ` .1. ) ) |
| 33 |
18 25 32
|
3eqtrd |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( Y ` ( S ` Q ) ) = ( I ` .1. ) ) |