Step |
Hyp |
Ref |
Expression |
1 |
|
m2detleiblem1.n |
|- N = { 1 , 2 } |
2 |
|
m2detleiblem1.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
3 |
|
m2detleiblem1.y |
|- Y = ( ZRHom ` R ) |
4 |
|
m2detleiblem1.s |
|- S = ( pmSgn ` N ) |
5 |
|
m2detleiblem1.o |
|- .1. = ( 1r ` R ) |
6 |
|
m2detleiblem1.i |
|- I = ( invg ` R ) |
7 |
|
1ex |
|- 1 e. _V |
8 |
|
2nn |
|- 2 e. NN |
9 |
|
prex |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. _V |
10 |
9
|
prid2 |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
11 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
12 |
11 2 1
|
symg2bas |
|- ( ( 1 e. _V /\ 2 e. NN ) -> P = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
13 |
10 12
|
eleqtrrid |
|- ( ( 1 e. _V /\ 2 e. NN ) -> { <. 1 , 2 >. , <. 2 , 1 >. } e. P ) |
14 |
7 8 13
|
mp2an |
|- { <. 1 , 2 >. , <. 2 , 1 >. } e. P |
15 |
|
eleq1 |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( Q e. P <-> { <. 1 , 2 >. , <. 2 , 1 >. } e. P ) ) |
16 |
14 15
|
mpbiri |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> Q e. P ) |
17 |
1 2 3 4 5
|
m2detleiblem1 |
|- ( ( R e. Ring /\ Q e. P ) -> ( Y ` ( S ` Q ) ) = ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) ) |
18 |
16 17
|
sylan2 |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( Y ` ( S ` Q ) ) = ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) ) |
19 |
|
fveq2 |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( ( pmSgn ` N ) ` Q ) = ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
20 |
19
|
adantl |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( ( pmSgn ` N ) ` Q ) = ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
21 |
|
eqid |
|- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
22 |
|
eqid |
|- ( pmSgn ` N ) = ( pmSgn ` N ) |
23 |
1 11 2 21 22
|
psgnprfval2 |
|- ( ( pmSgn ` N ) ` { <. 1 , 2 >. , <. 2 , 1 >. } ) = -u 1 |
24 |
20 23
|
eqtrdi |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( ( pmSgn ` N ) ` Q ) = -u 1 ) |
25 |
24
|
oveq1d |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) = ( -u 1 ( .g ` R ) .1. ) ) |
26 |
|
ringgrp |
|- ( R e. Ring -> R e. Grp ) |
27 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
28 |
27 5
|
ringidcl |
|- ( R e. Ring -> .1. e. ( Base ` R ) ) |
29 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
30 |
27 29 6
|
mulgm1 |
|- ( ( R e. Grp /\ .1. e. ( Base ` R ) ) -> ( -u 1 ( .g ` R ) .1. ) = ( I ` .1. ) ) |
31 |
26 28 30
|
syl2anc |
|- ( R e. Ring -> ( -u 1 ( .g ` R ) .1. ) = ( I ` .1. ) ) |
32 |
31
|
adantr |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( -u 1 ( .g ` R ) .1. ) = ( I ` .1. ) ) |
33 |
18 25 32
|
3eqtrd |
|- ( ( R e. Ring /\ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( Y ` ( S ` Q ) ) = ( I ` .1. ) ) |