Step |
Hyp |
Ref |
Expression |
1 |
|
m2detleiblem1.n |
|- N = { 1 , 2 } |
2 |
|
m2detleiblem1.p |
|- P = ( Base ` ( SymGrp ` N ) ) |
3 |
|
m2detleiblem1.y |
|- Y = ( ZRHom ` R ) |
4 |
|
m2detleiblem1.s |
|- S = ( pmSgn ` N ) |
5 |
|
m2detleiblem1.o |
|- .1. = ( 1r ` R ) |
6 |
|
elpri |
|- ( Q e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } \/ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
7 |
|
fveq2 |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( S ` Q ) = ( S ` { <. 1 , 1 >. , <. 2 , 2 >. } ) ) |
8 |
|
eqid |
|- ( SymGrp ` N ) = ( SymGrp ` N ) |
9 |
|
eqid |
|- ran ( pmTrsp ` N ) = ran ( pmTrsp ` N ) |
10 |
1 8 2 9 4
|
psgnprfval1 |
|- ( S ` { <. 1 , 1 >. , <. 2 , 2 >. } ) = 1 |
11 |
7 10
|
eqtrdi |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( S ` Q ) = 1 ) |
12 |
|
1z |
|- 1 e. ZZ |
13 |
11 12
|
eqeltrdi |
|- ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } -> ( S ` Q ) e. ZZ ) |
14 |
|
fveq2 |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( S ` Q ) = ( S ` { <. 1 , 2 >. , <. 2 , 1 >. } ) ) |
15 |
1 8 2 9 4
|
psgnprfval2 |
|- ( S ` { <. 1 , 2 >. , <. 2 , 1 >. } ) = -u 1 |
16 |
14 15
|
eqtrdi |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( S ` Q ) = -u 1 ) |
17 |
|
neg1z |
|- -u 1 e. ZZ |
18 |
16 17
|
eqeltrdi |
|- ( Q = { <. 1 , 2 >. , <. 2 , 1 >. } -> ( S ` Q ) e. ZZ ) |
19 |
13 18
|
jaoi |
|- ( ( Q = { <. 1 , 1 >. , <. 2 , 2 >. } \/ Q = { <. 1 , 2 >. , <. 2 , 1 >. } ) -> ( S ` Q ) e. ZZ ) |
20 |
6 19
|
syl |
|- ( Q e. { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } -> ( S ` Q ) e. ZZ ) |
21 |
|
1ex |
|- 1 e. _V |
22 |
|
2nn |
|- 2 e. NN |
23 |
8 2 1
|
symg2bas |
|- ( ( 1 e. _V /\ 2 e. NN ) -> P = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } ) |
24 |
21 22 23
|
mp2an |
|- P = { { <. 1 , 1 >. , <. 2 , 2 >. } , { <. 1 , 2 >. , <. 2 , 1 >. } } |
25 |
20 24
|
eleq2s |
|- ( Q e. P -> ( S ` Q ) e. ZZ ) |
26 |
|
eqid |
|- ( .g ` R ) = ( .g ` R ) |
27 |
3 26 5
|
zrhmulg |
|- ( ( R e. Ring /\ ( S ` Q ) e. ZZ ) -> ( Y ` ( S ` Q ) ) = ( ( S ` Q ) ( .g ` R ) .1. ) ) |
28 |
25 27
|
sylan2 |
|- ( ( R e. Ring /\ Q e. P ) -> ( Y ` ( S ` Q ) ) = ( ( S ` Q ) ( .g ` R ) .1. ) ) |
29 |
4
|
a1i |
|- ( ( R e. Ring /\ Q e. P ) -> S = ( pmSgn ` N ) ) |
30 |
29
|
fveq1d |
|- ( ( R e. Ring /\ Q e. P ) -> ( S ` Q ) = ( ( pmSgn ` N ) ` Q ) ) |
31 |
30
|
oveq1d |
|- ( ( R e. Ring /\ Q e. P ) -> ( ( S ` Q ) ( .g ` R ) .1. ) = ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) ) |
32 |
28 31
|
eqtrd |
|- ( ( R e. Ring /\ Q e. P ) -> ( Y ` ( S ` Q ) ) = ( ( ( pmSgn ` N ) ` Q ) ( .g ` R ) .1. ) ) |