Metamath Proof Explorer


Theorem fvpr2

Description: The value of a function with a domain of two elements. (Contributed by Jeff Madsen, 20-Jun-2010) (Proof shortened by BJ, 26-Sep-2024)

Ref Expression
Hypotheses fvpr2.1
|- B e. _V
fvpr2.2
|- D e. _V
Assertion fvpr2
|- ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` B ) = D )

Proof

Step Hyp Ref Expression
1 fvpr2.1
 |-  B e. _V
2 fvpr2.2
 |-  D e. _V
3 fvpr2g
 |-  ( ( B e. _V /\ D e. _V /\ A =/= B ) -> ( { <. A , C >. , <. B , D >. } ` B ) = D )
4 1 2 3 mp3an12
 |-  ( A =/= B -> ( { <. A , C >. , <. B , D >. } ` B ) = D )