| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cramerimp.a |
|
| 2 |
|
cramerimp.b |
|
| 3 |
|
cramerimp.v |
|
| 4 |
|
cramerimp.e |
|
| 5 |
|
cramerimp.h |
|
| 6 |
|
cramerimp.x |
|
| 7 |
|
cramerimp.d |
|
| 8 |
|
cramerimp.q |
|
| 9 |
|
crngring |
|
| 10 |
9
|
adantr |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
|
eqid |
|
| 13 |
7 1 2 12
|
mdetf |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
3ad2ant1 |
|
| 16 |
1 2
|
matrcl |
|
| 17 |
16
|
simpld |
|
| 18 |
17
|
adantr |
|
| 19 |
10 18
|
anim12i |
|
| 20 |
19
|
3adant3 |
|
| 21 |
|
ne0i |
|
| 22 |
9 21
|
anim12ci |
|
| 23 |
22
|
anim1i |
|
| 24 |
23
|
3adant3 |
|
| 25 |
|
simpl |
|
| 26 |
25
|
3ad2ant3 |
|
| 27 |
1 2 3 6
|
slesolvec |
|
| 28 |
24 26 27
|
sylc |
|
| 29 |
|
simpr |
|
| 30 |
29
|
3ad2ant1 |
|
| 31 |
|
eqid |
|
| 32 |
1 2 3 31
|
ma1repvcl |
|
| 33 |
20 28 30 32
|
syl12anc |
|
| 34 |
4 33
|
eqeltrid |
|
| 35 |
15 34
|
ffvelcdmd |
|
| 36 |
|
simpr |
|
| 37 |
36
|
3ad2ant3 |
|
| 38 |
|
eqid |
|
| 39 |
|
eqid |
|
| 40 |
12 38 8 39
|
dvrcan3 |
|
| 41 |
11 35 37 40
|
syl3anc |
|
| 42 |
|
simpl |
|
| 43 |
42
|
3ad2ant1 |
|
| 44 |
12 38
|
unitcl |
|
| 45 |
44
|
adantl |
|
| 46 |
45
|
3ad2ant3 |
|
| 47 |
12 39
|
crngcom |
|
| 48 |
43 35 46 47
|
syl3anc |
|
| 49 |
48
|
oveq1d |
|
| 50 |
18
|
adantl |
|
| 51 |
42
|
adantr |
|
| 52 |
29
|
adantr |
|
| 53 |
50 51 52
|
3jca |
|
| 54 |
53
|
3adant3 |
|
| 55 |
1 3 4 7
|
cramerimplem1 |
|
| 56 |
54 28 55
|
syl2anc |
|
| 57 |
41 49 56
|
3eqtr3rd |
|
| 58 |
1 2 3 4 5 6 7 39
|
cramerimplem3 |
|
| 59 |
58
|
3adant3r |
|
| 60 |
59
|
oveq1d |
|
| 61 |
57 60
|
eqtrd |
|