Metamath Proof Explorer


Theorem ma1repvcl

Description: Closure of the column replacement function for identity matrices. (Contributed by AV, 15-Feb-2019) (Revised by AV, 26-Feb-2019)

Ref Expression
Hypotheses marepvcl.a A=NMatR
marepvcl.b B=BaseA
marepvcl.v V=BaseRN
ma1repvcl.1 1˙=1A
Assertion ma1repvcl RRingNFinCVKN1˙NmatRepVRCKB

Proof

Step Hyp Ref Expression
1 marepvcl.a A=NMatR
2 marepvcl.b B=BaseA
3 marepvcl.v V=BaseRN
4 ma1repvcl.1 1˙=1A
5 simpll RRingNFinCVKNRRing
6 1 fveq2i 1A=1NMatR
7 4 6 eqtri 1˙=1NMatR
8 1 2 7 mat1bas RRingNFin1˙B
9 8 anim1i RRingNFinCVKN1˙BCVKN
10 3anass 1˙BCVKN1˙BCVKN
11 9 10 sylibr RRingNFinCVKN1˙BCVKN
12 1 2 3 marepvcl RRing1˙BCVKN1˙NmatRepVRCKB
13 5 11 12 syl2anc RRingNFinCVKN1˙NmatRepVRCKB