Metamath Proof Explorer


Theorem cramerimplem3

Description: Lemma 3 for cramerimp : The determinant of the matrix of a system of linear equations multiplied with the determinant of the identity matrix with the ith column replaced by the solution vector of the system of linear equations equals the determinant of the matrix of the system of linear equations with the ith column replaced by the right-hand side vector of the system of linear equations. (Contributed by AV, 19-Feb-2019) (Revised by AV, 1-Mar-2019)

Ref Expression
Hypotheses cramerimp.a A = N Mat R
cramerimp.b B = Base A
cramerimp.v V = Base R N
cramerimp.e E = 1 A N matRepV R Z I
cramerimp.h H = X N matRepV R Y I
cramerimp.x · ˙ = R maVecMul N N
cramerimp.d D = N maDet R
cramerimp.t ˙ = R
Assertion cramerimplem3 R CRing I N X B Y V X · ˙ Z = Y D X ˙ D E = D H

Proof

Step Hyp Ref Expression
1 cramerimp.a A = N Mat R
2 cramerimp.b B = Base A
3 cramerimp.v V = Base R N
4 cramerimp.e E = 1 A N matRepV R Z I
5 cramerimp.h H = X N matRepV R Y I
6 cramerimp.x · ˙ = R maVecMul N N
7 cramerimp.d D = N maDet R
8 cramerimp.t ˙ = R
9 simpl R CRing I N R CRing
10 1 2 matrcl X B N Fin R V
11 10 simpld X B N Fin
12 11 adantr X B Y V N Fin
13 9 12 anim12ci R CRing I N X B Y V N Fin R CRing
14 13 3adant3 R CRing I N X B Y V X · ˙ Z = Y N Fin R CRing
15 eqid R maMul N N N = R maMul N N N
16 1 15 matmulr N Fin R CRing R maMul N N N = A
17 14 16 syl R CRing I N X B Y V X · ˙ Z = Y R maMul N N N = A
18 17 oveqd R CRing I N X B Y V X · ˙ Z = Y X R maMul N N N E = X A E
19 18 fveq2d R CRing I N X B Y V X · ˙ Z = Y D X R maMul N N N E = D X A E
20 1 2 3 4 5 6 15 cramerimplem2 R CRing I N X B Y V X · ˙ Z = Y X R maMul N N N E = H
21 20 fveq2d R CRing I N X B Y V X · ˙ Z = Y D X R maMul N N N E = D H
22 simp1l R CRing I N X B Y V X · ˙ Z = Y R CRing
23 simp2l R CRing I N X B Y V X · ˙ Z = Y X B
24 crngring R CRing R Ring
25 24 adantr R CRing I N R Ring
26 25 12 anim12i R CRing I N X B Y V R Ring N Fin
27 26 3adant3 R CRing I N X B Y V X · ˙ Z = Y R Ring N Fin
28 ne0i I N N
29 24 28 anim12ci R CRing I N N R Ring
30 1 2 3 6 slesolvec N R Ring X B Y V X · ˙ Z = Y Z V
31 29 30 sylan R CRing I N X B Y V X · ˙ Z = Y Z V
32 31 3impia R CRing I N X B Y V X · ˙ Z = Y Z V
33 simp1r R CRing I N X B Y V X · ˙ Z = Y I N
34 eqid 1 A = 1 A
35 1 2 3 34 ma1repvcl R Ring N Fin Z V I N 1 A N matRepV R Z I B
36 27 32 33 35 syl12anc R CRing I N X B Y V X · ˙ Z = Y 1 A N matRepV R Z I B
37 4 36 eqeltrid R CRing I N X B Y V X · ˙ Z = Y E B
38 eqid A = A
39 1 2 7 8 38 mdetmul R CRing X B E B D X A E = D X ˙ D E
40 22 23 37 39 syl3anc R CRing I N X B Y V X · ˙ Z = Y D X A E = D X ˙ D E
41 19 21 40 3eqtr3rd R CRing I N X B Y V X · ˙ Z = Y D X ˙ D E = D H