| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cramerimp.a |
|
| 2 |
|
cramerimp.b |
|
| 3 |
|
cramerimp.v |
|
| 4 |
|
cramerimp.e |
|
| 5 |
|
cramerimp.h |
|
| 6 |
|
cramerimp.x |
|
| 7 |
|
cramerimp.m |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
simpl |
|
| 11 |
10
|
3ad2ant1 |
|
| 12 |
1 2
|
matrcl |
|
| 13 |
12
|
simpld |
|
| 14 |
13
|
adantr |
|
| 15 |
14
|
3ad2ant2 |
|
| 16 |
13
|
anim2i |
|
| 17 |
16
|
ancomd |
|
| 18 |
1 8
|
matbas2 |
|
| 19 |
17 18
|
syl |
|
| 20 |
2 19
|
eqtr4id |
|
| 21 |
20
|
eleq2d |
|
| 22 |
21
|
biimpd |
|
| 23 |
22
|
ex |
|
| 24 |
23
|
adantr |
|
| 25 |
24
|
com12 |
|
| 26 |
25
|
pm2.43a |
|
| 27 |
26
|
adantr |
|
| 28 |
27
|
impcom |
|
| 29 |
28
|
3adant3 |
|
| 30 |
|
crngring |
|
| 31 |
30
|
adantr |
|
| 32 |
31 14
|
anim12i |
|
| 33 |
32
|
3adant3 |
|
| 34 |
|
ne0i |
|
| 35 |
34
|
adantl |
|
| 36 |
35
|
3ad2ant1 |
|
| 37 |
15 15 36
|
3jca |
|
| 38 |
3
|
eleq2i |
|
| 39 |
38
|
biimpi |
|
| 40 |
39
|
adantl |
|
| 41 |
10 40
|
anim12i |
|
| 42 |
41
|
3adant3 |
|
| 43 |
|
simp3 |
|
| 44 |
|
eqid |
|
| 45 |
|
eqid |
|
| 46 |
8 44 3 6 45
|
mavmulsolcl |
|
| 47 |
46
|
imp |
|
| 48 |
37 42 43 47
|
syl21anc |
|
| 49 |
|
simpr |
|
| 50 |
49
|
3ad2ant1 |
|
| 51 |
|
eqid |
|
| 52 |
1 2 3 51
|
ma1repvcl |
|
| 53 |
4 52
|
eqeltrid |
|
| 54 |
33 48 50 53
|
syl12anc |
|
| 55 |
20
|
eqcomd |
|
| 56 |
55
|
ad2ant2r |
|
| 57 |
56
|
3adant3 |
|
| 58 |
54 57
|
eleqtrrd |
|
| 59 |
7 8 9 11 15 15 15 29 58
|
mamuval |
|
| 60 |
31
|
3ad2ant1 |
|
| 61 |
60
|
3ad2ant1 |
|
| 62 |
|
simpl |
|
| 63 |
62
|
3ad2ant2 |
|
| 64 |
63 48 50
|
3jca |
|
| 65 |
64
|
3ad2ant1 |
|
| 66 |
|
simp2 |
|
| 67 |
|
simp3 |
|
| 68 |
43
|
3ad2ant1 |
|
| 69 |
|
eqid |
|
| 70 |
1 2 3 51 69 4 6
|
mulmarep1gsum2 |
|
| 71 |
61 65 66 67 68 70
|
syl113anc |
|
| 72 |
71
|
mpoeq3dva |
|
| 73 |
|
simpr |
|
| 74 |
73
|
3ad2ant2 |
|
| 75 |
|
eqid |
|
| 76 |
1 2 75 3
|
marepvval |
|
| 77 |
63 74 50 76
|
syl3anc |
|
| 78 |
5 77
|
eqtr2id |
|
| 79 |
59 72 78
|
3eqtrd |
|