| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mavmuldm.b |
|
| 2 |
|
mavmuldm.c |
|
| 3 |
|
mavmuldm.d |
|
| 4 |
|
mavmuldm.t |
|
| 5 |
|
mavmulsolcl.e |
|
| 6 |
|
2a1 |
|
| 7 |
|
simpl |
|
| 8 |
7
|
adantl |
|
| 9 |
|
simpl1 |
|
| 10 |
|
simpl2 |
|
| 11 |
8 9 10
|
3jca |
|
| 12 |
11
|
adantl |
|
| 13 |
1 2 3 4
|
mavmuldm |
|
| 14 |
12 13
|
syl |
|
| 15 |
|
simpl |
|
| 16 |
15
|
intnand |
|
| 17 |
|
ndmovg |
|
| 18 |
14 16 17
|
syl2anc |
|
| 19 |
|
eqeq1 |
|
| 20 |
|
elmapi |
|
| 21 |
|
f0dom0 |
|
| 22 |
21
|
biimprd |
|
| 23 |
22
|
necon3d |
|
| 24 |
23
|
com12 |
|
| 25 |
24
|
3ad2ant3 |
|
| 26 |
25
|
com12 |
|
| 27 |
26
|
a1d |
|
| 28 |
20 27
|
syl |
|
| 29 |
28 5
|
eleq2s |
|
| 30 |
29
|
impcom |
|
| 31 |
30
|
impcom |
|
| 32 |
|
eqneqall |
|
| 33 |
31 32
|
syl5com |
|
| 34 |
33
|
adantl |
|
| 35 |
34
|
com12 |
|
| 36 |
35
|
eqcoms |
|
| 37 |
19 36
|
biimtrdi |
|
| 38 |
37
|
com23 |
|
| 39 |
18 38
|
mpcom |
|
| 40 |
39
|
ex |
|
| 41 |
6 40
|
pm2.61i |
|