Metamath Proof Explorer


Theorem mavmulsolcl

Description: Every solution of the equation A * X = Y for a matrix A and a vector B is a vector. (Contributed by AV, 27-Feb-2019)

Ref Expression
Hypotheses mavmuldm.b B=BaseR
mavmuldm.c C=BM×N
mavmuldm.d D=BN
mavmuldm.t ·˙=RmaVecMulMN
mavmulsolcl.e E=BM
Assertion mavmulsolcl MFinNFinMRVYEA·˙X=YXD

Proof

Step Hyp Ref Expression
1 mavmuldm.b B=BaseR
2 mavmuldm.c C=BM×N
3 mavmuldm.d D=BN
4 mavmuldm.t ·˙=RmaVecMulMN
5 mavmulsolcl.e E=BM
6 2a1 XDMFinNFinMRVYEA·˙X=YXD
7 simpl RVYERV
8 7 adantl MFinNFinMRVYERV
9 simpl1 MFinNFinMRVYEMFin
10 simpl2 MFinNFinMRVYENFin
11 8 9 10 3jca MFinNFinMRVYERVMFinNFin
12 11 adantl ¬XDMFinNFinMRVYERVMFinNFin
13 1 2 3 4 mavmuldm RVMFinNFindom·˙=C×D
14 12 13 syl ¬XDMFinNFinMRVYEdom·˙=C×D
15 simpl ¬XDMFinNFinMRVYE¬XD
16 15 intnand ¬XDMFinNFinMRVYE¬ACXD
17 ndmovg dom·˙=C×D¬ACXDA·˙X=
18 14 16 17 syl2anc ¬XDMFinNFinMRVYEA·˙X=
19 eqeq1 A·˙X=A·˙X=Y=Y
20 elmapi YBMY:MB
21 f0dom0 Y:MBM=Y=
22 21 biimprd Y:MBY=M=
23 22 necon3d Y:MBMY
24 23 com12 MY:MBY
25 24 3ad2ant3 MFinNFinMY:MBY
26 25 com12 Y:MBMFinNFinMY
27 26 a1d Y:MBRVMFinNFinMY
28 20 27 syl YBMRVMFinNFinMY
29 28 5 eleq2s YERVMFinNFinMY
30 29 impcom RVYEMFinNFinMY
31 30 impcom MFinNFinMRVYEY
32 eqneqall Y=YXD
33 31 32 syl5com MFinNFinMRVYEY=XD
34 33 adantl ¬XDMFinNFinMRVYEY=XD
35 34 com12 Y=¬XDMFinNFinMRVYEXD
36 35 eqcoms =Y¬XDMFinNFinMRVYEXD
37 19 36 syl6bi A·˙X=A·˙X=Y¬XDMFinNFinMRVYEXD
38 37 com23 A·˙X=¬XDMFinNFinMRVYEA·˙X=YXD
39 18 38 mpcom ¬XDMFinNFinMRVYEA·˙X=YXD
40 39 ex ¬XDMFinNFinMRVYEA·˙X=YXD
41 6 40 pm2.61i MFinNFinMRVYEA·˙X=YXD