Metamath Proof Explorer


Theorem matmulr

Description: Multiplication in the matrix algebra. (Contributed by Stefan O'Rear, 4-Sep-2015)

Ref Expression
Hypotheses matmulr.a A=NMatR
matmulr.t ·˙=RmaMulNNN
Assertion matmulr NFinRV·˙=A

Proof

Step Hyp Ref Expression
1 matmulr.a A=NMatR
2 matmulr.t ·˙=RmaMulNNN
3 ovex RfreeLModN×NV
4 2 ovexi ·˙V
5 3 4 pm3.2i RfreeLModN×NV·˙V
6 mulridx 𝑟=Slotndx
7 6 setsid RfreeLModN×NV·˙V·˙=RfreeLModN×NsSetndx·˙
8 5 7 mp1i NFinRV·˙=RfreeLModN×NsSetndx·˙
9 eqid RfreeLModN×N=RfreeLModN×N
10 1 9 2 matval NFinRVA=RfreeLModN×NsSetndx·˙
11 10 fveq2d NFinRVA=RfreeLModN×NsSetndx·˙
12 8 11 eqtr4d NFinRV·˙=A