Metamath Proof Explorer


Theorem mamumat1cl

Description: The identity matrix (as operation in maps-to notation) is a matrix. (Contributed by Stefan O'Rear, 2-Sep-2015)

Ref Expression
Hypotheses mamumat1cl.b B=BaseR
mamumat1cl.r φRRing
mamumat1cl.o 1˙=1R
mamumat1cl.z 0˙=0R
mamumat1cl.i I=iM,jMifi=j1˙0˙
mamumat1cl.m φMFin
Assertion mamumat1cl φIBM×M

Proof

Step Hyp Ref Expression
1 mamumat1cl.b B=BaseR
2 mamumat1cl.r φRRing
3 mamumat1cl.o 1˙=1R
4 mamumat1cl.z 0˙=0R
5 mamumat1cl.i I=iM,jMifi=j1˙0˙
6 mamumat1cl.m φMFin
7 1 3 ringidcl RRing1˙B
8 1 4 ring0cl RRing0˙B
9 7 8 ifcld RRingifi=j1˙0˙B
10 2 9 syl φifi=j1˙0˙B
11 10 adantr φiMjMifi=j1˙0˙B
12 11 ralrimivva φiMjMifi=j1˙0˙B
13 5 fmpo iMjMifi=j1˙0˙BI:M×MB
14 12 13 sylib φI:M×MB
15 1 fvexi BV
16 xpfi MFinMFinM×MFin
17 6 6 16 syl2anc φM×MFin
18 elmapg BVM×MFinIBM×MI:M×MB
19 15 17 18 sylancr φIBM×MI:M×MB
20 14 19 mpbird φIBM×M