| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mamumat1cl.b |
|- B = ( Base ` R ) |
| 2 |
|
mamumat1cl.r |
|- ( ph -> R e. Ring ) |
| 3 |
|
mamumat1cl.o |
|- .1. = ( 1r ` R ) |
| 4 |
|
mamumat1cl.z |
|- .0. = ( 0g ` R ) |
| 5 |
|
mamumat1cl.i |
|- I = ( i e. M , j e. M |-> if ( i = j , .1. , .0. ) ) |
| 6 |
|
mamumat1cl.m |
|- ( ph -> M e. Fin ) |
| 7 |
1 3
|
ringidcl |
|- ( R e. Ring -> .1. e. B ) |
| 8 |
1 4
|
ring0cl |
|- ( R e. Ring -> .0. e. B ) |
| 9 |
7 8
|
ifcld |
|- ( R e. Ring -> if ( i = j , .1. , .0. ) e. B ) |
| 10 |
2 9
|
syl |
|- ( ph -> if ( i = j , .1. , .0. ) e. B ) |
| 11 |
10
|
adantr |
|- ( ( ph /\ ( i e. M /\ j e. M ) ) -> if ( i = j , .1. , .0. ) e. B ) |
| 12 |
11
|
ralrimivva |
|- ( ph -> A. i e. M A. j e. M if ( i = j , .1. , .0. ) e. B ) |
| 13 |
5
|
fmpo |
|- ( A. i e. M A. j e. M if ( i = j , .1. , .0. ) e. B <-> I : ( M X. M ) --> B ) |
| 14 |
12 13
|
sylib |
|- ( ph -> I : ( M X. M ) --> B ) |
| 15 |
1
|
fvexi |
|- B e. _V |
| 16 |
|
xpfi |
|- ( ( M e. Fin /\ M e. Fin ) -> ( M X. M ) e. Fin ) |
| 17 |
6 6 16
|
syl2anc |
|- ( ph -> ( M X. M ) e. Fin ) |
| 18 |
|
elmapg |
|- ( ( B e. _V /\ ( M X. M ) e. Fin ) -> ( I e. ( B ^m ( M X. M ) ) <-> I : ( M X. M ) --> B ) ) |
| 19 |
15 17 18
|
sylancr |
|- ( ph -> ( I e. ( B ^m ( M X. M ) ) <-> I : ( M X. M ) --> B ) ) |
| 20 |
14 19
|
mpbird |
|- ( ph -> I e. ( B ^m ( M X. M ) ) ) |