Metamath Proof Explorer


Theorem mdettpos

Description: Determinant is invariant under transposition. Proposition 4.8 in Lang p. 514. (Contributed by Stefan O'Rear, 9-Jul-2018)

Ref Expression
Hypotheses mdettpos.d D=NmaDetR
mdettpos.a A=NMatR
mdettpos.b B=BaseA
Assertion mdettpos RCRingMBDtposM=DM

Proof

Step Hyp Ref Expression
1 mdettpos.d D=NmaDetR
2 mdettpos.a A=NMatR
3 mdettpos.b B=BaseA
4 ovtpos pxtposMx=xMpx
5 4 mpteq2i xNpxtposMx=xNxMpx
6 5 oveq2i mulGrpRxNpxtposMx=mulGrpRxNxMpx
7 6 oveq2i ℤRHomRpmSgnNpRmulGrpRxNpxtposMx=ℤRHomRpmSgnNpRmulGrpRxNxMpx
8 7 mpteq2i pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxtposMx=pBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNxMpx
9 8 oveq2i RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxtposMx=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNxMpx
10 2 3 mattposcl MBtposMB
11 10 adantl RCRingMBtposMB
12 eqid BaseSymGrpN=BaseSymGrpN
13 eqid ℤRHomR=ℤRHomR
14 eqid pmSgnN=pmSgnN
15 eqid R=R
16 eqid mulGrpR=mulGrpR
17 1 2 3 12 13 14 15 16 mdetleib tposMBDtposM=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxtposMx
18 11 17 syl RCRingMBDtposM=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNpxtposMx
19 1 2 3 12 13 14 15 16 mdetleib2 RCRingMBDM=RpBaseSymGrpNℤRHomRpmSgnNpRmulGrpRxNxMpx
20 9 18 19 3eqtr4a RCRingMBDtposM=DM