Metamath Proof Explorer


Theorem mdettpos

Description: Determinant is invariant under transposition. Proposition 4.8 in Lang p. 514. (Contributed by Stefan O'Rear, 9-Jul-2018)

Ref Expression
Hypotheses mdettpos.d D = N maDet R
mdettpos.a A = N Mat R
mdettpos.b B = Base A
Assertion mdettpos R CRing M B D tpos M = D M

Proof

Step Hyp Ref Expression
1 mdettpos.d D = N maDet R
2 mdettpos.a A = N Mat R
3 mdettpos.b B = Base A
4 ovtpos p x tpos M x = x M p x
5 4 mpteq2i x N p x tpos M x = x N x M p x
6 5 oveq2i mulGrp R x N p x tpos M x = mulGrp R x N x M p x
7 6 oveq2i ℤRHom R pmSgn N p R mulGrp R x N p x tpos M x = ℤRHom R pmSgn N p R mulGrp R x N x M p x
8 7 mpteq2i p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x tpos M x = p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N x M p x
9 8 oveq2i R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x tpos M x = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N x M p x
10 2 3 mattposcl M B tpos M B
11 10 adantl R CRing M B tpos M B
12 eqid Base SymGrp N = Base SymGrp N
13 eqid ℤRHom R = ℤRHom R
14 eqid pmSgn N = pmSgn N
15 eqid R = R
16 eqid mulGrp R = mulGrp R
17 1 2 3 12 13 14 15 16 mdetleib tpos M B D tpos M = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x tpos M x
18 11 17 syl R CRing M B D tpos M = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N p x tpos M x
19 1 2 3 12 13 14 15 16 mdetleib2 R CRing M B D M = R p Base SymGrp N ℤRHom R pmSgn N p R mulGrp R x N x M p x
20 9 18 19 3eqtr4a R CRing M B D tpos M = D M