Metamath Proof Explorer


Theorem mdetunilem1

Description: Lemma for mdetuni . (Contributed by SO, 14-Jul-2018)

Ref Expression
Hypotheses mdetuni.a A=NMatR
mdetuni.b B=BaseA
mdetuni.k K=BaseR
mdetuni.0g 0˙=0R
mdetuni.1r 1˙=1R
mdetuni.pg +˙=+R
mdetuni.tg ·˙=R
mdetuni.n φNFin
mdetuni.r φRRing
mdetuni.ff φD:BK
mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
Assertion mdetunilem1 φEBwNFEw=GEwFNGNFGDE=0˙

Proof

Step Hyp Ref Expression
1 mdetuni.a A=NMatR
2 mdetuni.b B=BaseA
3 mdetuni.k K=BaseR
4 mdetuni.0g 0˙=0R
5 mdetuni.1r 1˙=1R
6 mdetuni.pg +˙=+R
7 mdetuni.tg ·˙=R
8 mdetuni.n φNFin
9 mdetuni.r φRRing
10 mdetuni.ff φD:BK
11 mdetuni.al φxByNzNyzwNyxw=zxwDx=0˙
12 mdetuni.li φxByBzBwNxw×N=yw×N+˙fzw×NxNw×N=yNw×NxNw×N=zNw×NDx=Dy+˙Dz
13 mdetuni.sc φxByKzBwNxw×N=w×N×y·˙fzw×NxNw×N=zNw×NDx=y·˙Dz
14 simpr3 φEBwNFEw=GEwFNGNFGFG
15 simpl3 φEBwNFEw=GEwFNGNFGwNFEw=GEw
16 neeq2 z=GFzFG
17 oveq1 z=GzEw=GEw
18 17 eqeq2d z=GFEw=zEwFEw=GEw
19 18 ralbidv z=GwNFEw=zEwwNFEw=GEw
20 16 19 anbi12d z=GFzwNFEw=zEwFGwNFEw=GEw
21 20 imbi1d z=GFzwNFEw=zEwDE=0˙FGwNFEw=GEwDE=0˙
22 simpl2 φEBwNFEw=GEwFNGNFGEB
23 simpr1 φEBwNFEw=GEwFNGNFGFN
24 simpl1 φEBwNFEw=GEwFNGNFGφ
25 24 11 syl φEBwNFEw=GEwFNGNFGxByNzNyzwNyxw=zxwDx=0˙
26 oveq x=Eyxw=yEw
27 oveq x=Ezxw=zEw
28 26 27 eqeq12d x=Eyxw=zxwyEw=zEw
29 28 ralbidv x=EwNyxw=zxwwNyEw=zEw
30 29 anbi2d x=EyzwNyxw=zxwyzwNyEw=zEw
31 fveqeq2 x=EDx=0˙DE=0˙
32 30 31 imbi12d x=EyzwNyxw=zxwDx=0˙yzwNyEw=zEwDE=0˙
33 32 ralbidv x=EzNyzwNyxw=zxwDx=0˙zNyzwNyEw=zEwDE=0˙
34 neeq1 y=FyzFz
35 oveq1 y=FyEw=FEw
36 35 eqeq1d y=FyEw=zEwFEw=zEw
37 36 ralbidv y=FwNyEw=zEwwNFEw=zEw
38 34 37 anbi12d y=FyzwNyEw=zEwFzwNFEw=zEw
39 38 imbi1d y=FyzwNyEw=zEwDE=0˙FzwNFEw=zEwDE=0˙
40 39 ralbidv y=FzNyzwNyEw=zEwDE=0˙zNFzwNFEw=zEwDE=0˙
41 33 40 rspc2va EBFNxByNzNyzwNyxw=zxwDx=0˙zNFzwNFEw=zEwDE=0˙
42 22 23 25 41 syl21anc φEBwNFEw=GEwFNGNFGzNFzwNFEw=zEwDE=0˙
43 simpr2 φEBwNFEw=GEwFNGNFGGN
44 21 42 43 rspcdva φEBwNFEw=GEwFNGNFGFGwNFEw=GEwDE=0˙
45 14 15 44 mp2and φEBwNFEw=GEwFNGNFGDE=0˙