| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetuni.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
mdetuni.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
mdetuni.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
| 4 |
|
mdetuni.0g |
⊢ 0 = ( 0g ‘ 𝑅 ) |
| 5 |
|
mdetuni.1r |
⊢ 1 = ( 1r ‘ 𝑅 ) |
| 6 |
|
mdetuni.pg |
⊢ + = ( +g ‘ 𝑅 ) |
| 7 |
|
mdetuni.tg |
⊢ · = ( .r ‘ 𝑅 ) |
| 8 |
|
mdetuni.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
| 9 |
|
mdetuni.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
| 10 |
|
mdetuni.ff |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
| 11 |
|
mdetuni.al |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
| 12 |
|
mdetuni.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 13 |
|
mdetuni.sc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
| 14 |
|
simpr3 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝐹 ≠ 𝐺 ) |
| 15 |
|
simpl3 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) |
| 16 |
|
neeq2 |
⊢ ( 𝑧 = 𝐺 → ( 𝐹 ≠ 𝑧 ↔ 𝐹 ≠ 𝐺 ) ) |
| 17 |
|
oveq1 |
⊢ ( 𝑧 = 𝐺 → ( 𝑧 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) |
| 18 |
17
|
eqeq2d |
⊢ ( 𝑧 = 𝐺 → ( ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ) |
| 19 |
18
|
ralbidv |
⊢ ( 𝑧 = 𝐺 → ( ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ) |
| 20 |
16 19
|
anbi12d |
⊢ ( 𝑧 = 𝐺 → ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ↔ ( 𝐹 ≠ 𝐺 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ) ) |
| 21 |
20
|
imbi1d |
⊢ ( 𝑧 = 𝐺 → ( ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ↔ ( ( 𝐹 ≠ 𝐺 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 22 |
|
simpl2 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝐸 ∈ 𝐵 ) |
| 23 |
|
simpr1 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝐹 ∈ 𝑁 ) |
| 24 |
|
simpl1 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝜑 ) |
| 25 |
24 11
|
syl |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
| 26 |
|
oveq |
⊢ ( 𝑥 = 𝐸 → ( 𝑦 𝑥 𝑤 ) = ( 𝑦 𝐸 𝑤 ) ) |
| 27 |
|
oveq |
⊢ ( 𝑥 = 𝐸 → ( 𝑧 𝑥 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) |
| 28 |
26 27
|
eqeq12d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ↔ ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) |
| 29 |
28
|
ralbidv |
⊢ ( 𝑥 = 𝐸 → ( ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ↔ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) |
| 30 |
29
|
anbi2d |
⊢ ( 𝑥 = 𝐸 → ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) ↔ ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) ) |
| 31 |
|
fveqeq2 |
⊢ ( 𝑥 = 𝐸 → ( ( 𝐷 ‘ 𝑥 ) = 0 ↔ ( 𝐷 ‘ 𝐸 ) = 0 ) ) |
| 32 |
30 31
|
imbi12d |
⊢ ( 𝑥 = 𝐸 → ( ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ↔ ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 33 |
32
|
ralbidv |
⊢ ( 𝑥 = 𝐸 → ( ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ↔ ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 34 |
|
neeq1 |
⊢ ( 𝑦 = 𝐹 → ( 𝑦 ≠ 𝑧 ↔ 𝐹 ≠ 𝑧 ) ) |
| 35 |
|
oveq1 |
⊢ ( 𝑦 = 𝐹 → ( 𝑦 𝐸 𝑤 ) = ( 𝐹 𝐸 𝑤 ) ) |
| 36 |
35
|
eqeq1d |
⊢ ( 𝑦 = 𝐹 → ( ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) |
| 37 |
36
|
ralbidv |
⊢ ( 𝑦 = 𝐹 → ( ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ↔ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) |
| 38 |
34 37
|
anbi12d |
⊢ ( 𝑦 = 𝐹 → ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ↔ ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) ) ) |
| 39 |
38
|
imbi1d |
⊢ ( 𝑦 = 𝐹 → ( ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ↔ ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 40 |
39
|
ralbidv |
⊢ ( 𝑦 = 𝐹 → ( ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ↔ ∀ 𝑧 ∈ 𝑁 ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) ) |
| 41 |
33 40
|
rspc2va |
⊢ ( ( ( 𝐸 ∈ 𝐵 ∧ 𝐹 ∈ 𝑁 ) ∧ ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) → ∀ 𝑧 ∈ 𝑁 ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) |
| 42 |
22 23 25 41
|
syl21anc |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ∀ 𝑧 ∈ 𝑁 ( ( 𝐹 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝑧 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) |
| 43 |
|
simpr2 |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → 𝐺 ∈ 𝑁 ) |
| 44 |
21 42 43
|
rspcdva |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ( ( 𝐹 ≠ 𝐺 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) ) |
| 45 |
14 15 44
|
mp2and |
⊢ ( ( ( 𝜑 ∧ 𝐸 ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐹 𝐸 𝑤 ) = ( 𝐺 𝐸 𝑤 ) ) ∧ ( 𝐹 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐹 ≠ 𝐺 ) ) → ( 𝐷 ‘ 𝐸 ) = 0 ) |