| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mdetuni.a |
|- A = ( N Mat R ) |
| 2 |
|
mdetuni.b |
|- B = ( Base ` A ) |
| 3 |
|
mdetuni.k |
|- K = ( Base ` R ) |
| 4 |
|
mdetuni.0g |
|- .0. = ( 0g ` R ) |
| 5 |
|
mdetuni.1r |
|- .1. = ( 1r ` R ) |
| 6 |
|
mdetuni.pg |
|- .+ = ( +g ` R ) |
| 7 |
|
mdetuni.tg |
|- .x. = ( .r ` R ) |
| 8 |
|
mdetuni.n |
|- ( ph -> N e. Fin ) |
| 9 |
|
mdetuni.r |
|- ( ph -> R e. Ring ) |
| 10 |
|
mdetuni.ff |
|- ( ph -> D : B --> K ) |
| 11 |
|
mdetuni.al |
|- ( ph -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
| 12 |
|
mdetuni.li |
|- ( ph -> A. x e. B A. y e. B A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( y |` ( { w } X. N ) ) oF .+ ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( y |` ( ( N \ { w } ) X. N ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( ( D ` y ) .+ ( D ` z ) ) ) ) |
| 13 |
|
mdetuni.sc |
|- ( ph -> A. x e. B A. y e. K A. z e. B A. w e. N ( ( ( x |` ( { w } X. N ) ) = ( ( ( { w } X. N ) X. { y } ) oF .x. ( z |` ( { w } X. N ) ) ) /\ ( x |` ( ( N \ { w } ) X. N ) ) = ( z |` ( ( N \ { w } ) X. N ) ) ) -> ( D ` x ) = ( y .x. ( D ` z ) ) ) ) |
| 14 |
|
simpr3 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> F =/= G ) |
| 15 |
|
simpl3 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. w e. N ( F E w ) = ( G E w ) ) |
| 16 |
|
neeq2 |
|- ( z = G -> ( F =/= z <-> F =/= G ) ) |
| 17 |
|
oveq1 |
|- ( z = G -> ( z E w ) = ( G E w ) ) |
| 18 |
17
|
eqeq2d |
|- ( z = G -> ( ( F E w ) = ( z E w ) <-> ( F E w ) = ( G E w ) ) ) |
| 19 |
18
|
ralbidv |
|- ( z = G -> ( A. w e. N ( F E w ) = ( z E w ) <-> A. w e. N ( F E w ) = ( G E w ) ) ) |
| 20 |
16 19
|
anbi12d |
|- ( z = G -> ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) <-> ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) ) ) |
| 21 |
20
|
imbi1d |
|- ( z = G -> ( ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> ( ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 22 |
|
simpl2 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> E e. B ) |
| 23 |
|
simpr1 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> F e. N ) |
| 24 |
|
simpl1 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ph ) |
| 25 |
24 11
|
syl |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) |
| 26 |
|
oveq |
|- ( x = E -> ( y x w ) = ( y E w ) ) |
| 27 |
|
oveq |
|- ( x = E -> ( z x w ) = ( z E w ) ) |
| 28 |
26 27
|
eqeq12d |
|- ( x = E -> ( ( y x w ) = ( z x w ) <-> ( y E w ) = ( z E w ) ) ) |
| 29 |
28
|
ralbidv |
|- ( x = E -> ( A. w e. N ( y x w ) = ( z x w ) <-> A. w e. N ( y E w ) = ( z E w ) ) ) |
| 30 |
29
|
anbi2d |
|- ( x = E -> ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) <-> ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) ) ) |
| 31 |
|
fveqeq2 |
|- ( x = E -> ( ( D ` x ) = .0. <-> ( D ` E ) = .0. ) ) |
| 32 |
30 31
|
imbi12d |
|- ( x = E -> ( ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) <-> ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 33 |
32
|
ralbidv |
|- ( x = E -> ( A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) <-> A. z e. N ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 34 |
|
neeq1 |
|- ( y = F -> ( y =/= z <-> F =/= z ) ) |
| 35 |
|
oveq1 |
|- ( y = F -> ( y E w ) = ( F E w ) ) |
| 36 |
35
|
eqeq1d |
|- ( y = F -> ( ( y E w ) = ( z E w ) <-> ( F E w ) = ( z E w ) ) ) |
| 37 |
36
|
ralbidv |
|- ( y = F -> ( A. w e. N ( y E w ) = ( z E w ) <-> A. w e. N ( F E w ) = ( z E w ) ) ) |
| 38 |
34 37
|
anbi12d |
|- ( y = F -> ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) <-> ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) ) ) |
| 39 |
38
|
imbi1d |
|- ( y = F -> ( ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 40 |
39
|
ralbidv |
|- ( y = F -> ( A. z e. N ( ( y =/= z /\ A. w e. N ( y E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) <-> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) ) |
| 41 |
33 40
|
rspc2va |
|- ( ( ( E e. B /\ F e. N ) /\ A. x e. B A. y e. N A. z e. N ( ( y =/= z /\ A. w e. N ( y x w ) = ( z x w ) ) -> ( D ` x ) = .0. ) ) -> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) |
| 42 |
22 23 25 41
|
syl21anc |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> A. z e. N ( ( F =/= z /\ A. w e. N ( F E w ) = ( z E w ) ) -> ( D ` E ) = .0. ) ) |
| 43 |
|
simpr2 |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> G e. N ) |
| 44 |
21 42 43
|
rspcdva |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( ( F =/= G /\ A. w e. N ( F E w ) = ( G E w ) ) -> ( D ` E ) = .0. ) ) |
| 45 |
14 15 44
|
mp2and |
|- ( ( ( ph /\ E e. B /\ A. w e. N ( F E w ) = ( G E w ) ) /\ ( F e. N /\ G e. N /\ F =/= G ) ) -> ( D ` E ) = .0. ) |