Step |
Hyp |
Ref |
Expression |
1 |
|
mdetuni.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mdetuni.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mdetuni.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
mdetuni.0g |
⊢ 0 = ( 0g ‘ 𝑅 ) |
5 |
|
mdetuni.1r |
⊢ 1 = ( 1r ‘ 𝑅 ) |
6 |
|
mdetuni.pg |
⊢ + = ( +g ‘ 𝑅 ) |
7 |
|
mdetuni.tg |
⊢ · = ( .r ‘ 𝑅 ) |
8 |
|
mdetuni.n |
⊢ ( 𝜑 → 𝑁 ∈ Fin ) |
9 |
|
mdetuni.r |
⊢ ( 𝜑 → 𝑅 ∈ Ring ) |
10 |
|
mdetuni.ff |
⊢ ( 𝜑 → 𝐷 : 𝐵 ⟶ 𝐾 ) |
11 |
|
mdetuni.al |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝑁 ∀ 𝑧 ∈ 𝑁 ( ( 𝑦 ≠ 𝑧 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝑦 𝑥 𝑤 ) = ( 𝑧 𝑥 𝑤 ) ) → ( 𝐷 ‘ 𝑥 ) = 0 ) ) |
12 |
|
mdetuni.li |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐵 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( 𝑦 ↾ ( { 𝑤 } × 𝑁 ) ) ∘f + ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑦 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( ( 𝐷 ‘ 𝑦 ) + ( 𝐷 ‘ 𝑧 ) ) ) ) |
13 |
|
mdetuni.sc |
⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐵 ∀ 𝑦 ∈ 𝐾 ∀ 𝑧 ∈ 𝐵 ∀ 𝑤 ∈ 𝑁 ( ( ( 𝑥 ↾ ( { 𝑤 } × 𝑁 ) ) = ( ( ( { 𝑤 } × 𝑁 ) × { 𝑦 } ) ∘f · ( 𝑧 ↾ ( { 𝑤 } × 𝑁 ) ) ) ∧ ( 𝑥 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) = ( 𝑧 ↾ ( ( 𝑁 ∖ { 𝑤 } ) × 𝑁 ) ) ) → ( 𝐷 ‘ 𝑥 ) = ( 𝑦 · ( 𝐷 ‘ 𝑧 ) ) ) ) |
14 |
|
mdetunilem2.ph |
⊢ ( 𝜓 → 𝜑 ) |
15 |
|
mdetunilem2.eg |
⊢ ( 𝜓 → ( 𝐸 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐸 ≠ 𝐺 ) ) |
16 |
|
mdetunilem2.f |
⊢ ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
17 |
|
mdetunilem2.h |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐻 ∈ 𝐾 ) |
18 |
14 8
|
syl |
⊢ ( 𝜓 → 𝑁 ∈ Fin ) |
19 |
14 9
|
syl |
⊢ ( 𝜓 → 𝑅 ∈ Ring ) |
20 |
16
|
3adant2 |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) |
21 |
20 17
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ∈ 𝐾 ) |
22 |
20 21
|
ifcld |
⊢ ( ( 𝜓 ∧ 𝑎 ∈ 𝑁 ∧ 𝑏 ∈ 𝑁 ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ∈ 𝐾 ) |
23 |
1 3 2 18 19 22
|
matbas2d |
⊢ ( 𝜓 → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ∈ 𝐵 ) |
24 |
|
eqidd |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) = ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ) |
25 |
|
iftrue |
⊢ ( 𝑎 = 𝐸 → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = 𝐹 ) |
26 |
|
csbeq1a |
⊢ ( 𝑏 = 𝑤 → 𝐹 = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
27 |
25 26
|
sylan9eq |
⊢ ( ( 𝑎 = 𝐸 ∧ 𝑏 = 𝑤 ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
28 |
27
|
adantl |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐸 ∧ 𝑏 = 𝑤 ) ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
29 |
|
eqidd |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐸 ) → 𝑁 = 𝑁 ) |
30 |
15
|
simp1d |
⊢ ( 𝜓 → 𝐸 ∈ 𝑁 ) |
31 |
30
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → 𝐸 ∈ 𝑁 ) |
32 |
|
simpr |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → 𝑤 ∈ 𝑁 ) |
33 |
|
nfv |
⊢ Ⅎ 𝑏 ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) |
34 |
|
nfcsb1v |
⊢ Ⅎ 𝑏 ⦋ 𝑤 / 𝑏 ⦌ 𝐹 |
35 |
34
|
nfel1 |
⊢ Ⅎ 𝑏 ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 |
36 |
33 35
|
nfim |
⊢ Ⅎ 𝑏 ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 ) |
37 |
|
eleq1w |
⊢ ( 𝑏 = 𝑤 → ( 𝑏 ∈ 𝑁 ↔ 𝑤 ∈ 𝑁 ) ) |
38 |
37
|
anbi2d |
⊢ ( 𝑏 = 𝑤 → ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) ↔ ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ) ) |
39 |
26
|
eleq1d |
⊢ ( 𝑏 = 𝑤 → ( 𝐹 ∈ 𝐾 ↔ ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 ) ) |
40 |
38 39
|
imbi12d |
⊢ ( 𝑏 = 𝑤 → ( ( ( 𝜓 ∧ 𝑏 ∈ 𝑁 ) → 𝐹 ∈ 𝐾 ) ↔ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 ) ) ) |
41 |
36 40 16
|
chvarfv |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ∈ 𝐾 ) |
42 |
|
nfv |
⊢ Ⅎ 𝑎 ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) |
43 |
|
nfcv |
⊢ Ⅎ 𝑏 𝐸 |
44 |
|
nfcv |
⊢ Ⅎ 𝑎 𝑤 |
45 |
|
nfcv |
⊢ Ⅎ 𝑎 ⦋ 𝑤 / 𝑏 ⦌ 𝐹 |
46 |
24 28 29 31 32 41 42 33 43 44 45 34
|
ovmpodxf |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐸 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
47 |
15
|
simp3d |
⊢ ( 𝜓 → 𝐸 ≠ 𝐺 ) |
48 |
47
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → 𝐸 ≠ 𝐺 ) |
49 |
|
neeq2 |
⊢ ( 𝑎 = 𝐺 → ( 𝐸 ≠ 𝑎 ↔ 𝐸 ≠ 𝐺 ) ) |
50 |
48 49
|
syl5ibrcom |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝑎 = 𝐺 → 𝐸 ≠ 𝑎 ) ) |
51 |
50
|
imp |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐺 ) → 𝐸 ≠ 𝑎 ) |
52 |
51
|
necomd |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐺 ) → 𝑎 ≠ 𝐸 ) |
53 |
52
|
neneqd |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐺 ) → ¬ 𝑎 = 𝐸 ) |
54 |
53
|
adantrr |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) ) → ¬ 𝑎 = 𝐸 ) |
55 |
54
|
iffalsed |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) |
56 |
|
iftrue |
⊢ ( 𝑎 = 𝐺 → if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) = 𝐹 ) |
57 |
56 26
|
sylan9eq |
⊢ ( ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) → if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
58 |
57
|
adantl |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) ) → if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
59 |
55 58
|
eqtrd |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ ( 𝑎 = 𝐺 ∧ 𝑏 = 𝑤 ) ) → if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
60 |
|
eqidd |
⊢ ( ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) ∧ 𝑎 = 𝐺 ) → 𝑁 = 𝑁 ) |
61 |
15
|
simp2d |
⊢ ( 𝜓 → 𝐺 ∈ 𝑁 ) |
62 |
61
|
adantr |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → 𝐺 ∈ 𝑁 ) |
63 |
|
nfcv |
⊢ Ⅎ 𝑏 𝐺 |
64 |
24 59 60 62 32 41 42 33 63 44 45 34
|
ovmpodxf |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐺 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ⦋ 𝑤 / 𝑏 ⦌ 𝐹 ) |
65 |
46 64
|
eqtr4d |
⊢ ( ( 𝜓 ∧ 𝑤 ∈ 𝑁 ) → ( 𝐸 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ( 𝐺 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) ) |
66 |
65
|
ralrimiva |
⊢ ( 𝜓 → ∀ 𝑤 ∈ 𝑁 ( 𝐸 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ( 𝐺 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) ) |
67 |
1 2 3 4 5 6 7 8 9 10 11 12 13
|
mdetunilem1 |
⊢ ( ( ( 𝜑 ∧ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ∈ 𝐵 ∧ ∀ 𝑤 ∈ 𝑁 ( 𝐸 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) = ( 𝐺 ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) 𝑤 ) ) ∧ ( 𝐸 ∈ 𝑁 ∧ 𝐺 ∈ 𝑁 ∧ 𝐸 ≠ 𝐺 ) ) → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ) = 0 ) |
68 |
14 23 66 15 67
|
syl31anc |
⊢ ( 𝜓 → ( 𝐷 ‘ ( 𝑎 ∈ 𝑁 , 𝑏 ∈ 𝑁 ↦ if ( 𝑎 = 𝐸 , 𝐹 , if ( 𝑎 = 𝐺 , 𝐹 , 𝐻 ) ) ) ) = 0 ) |