Metamath Proof Explorer


Theorem slesolinv

Description: The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 10-Feb-2019) (Revised by AV, 28-Feb-2019)

Ref Expression
Hypotheses slesolex.a A=NMatR
slesolex.b B=BaseA
slesolex.v V=BaseRN
slesolex.x ·˙=RmaVecMulNN
slesolex.d D=NmaDetR
slesolinv.i I=invrA
Assertion slesolinv NRCRingXBYVDXUnitRX·˙Z=YZ=IX·˙Y

Proof

Step Hyp Ref Expression
1 slesolex.a A=NMatR
2 slesolex.b B=BaseA
3 slesolex.v V=BaseRN
4 slesolex.x ·˙=RmaVecMulNN
5 slesolex.d D=NmaDetR
6 slesolinv.i I=invrA
7 eqid BaseR=BaseR
8 crngring RCRingRRing
9 8 adantl NRCRingRRing
10 9 3ad2ant1 NRCRingXBYVDXUnitRX·˙Z=YRRing
11 1 2 matrcl XBNFinRV
12 11 simpld XBNFin
13 12 adantr XBYVNFin
14 13 3ad2ant2 NRCRingXBYVDXUnitRX·˙Z=YNFin
15 8 anim2i NRCRingNRRing
16 15 anim1i NRCRingXBYVNRRingXBYV
17 16 3adant3 NRCRingXBYVDXUnitRX·˙Z=YNRRingXBYV
18 simpr DXUnitRX·˙Z=YX·˙Z=Y
19 18 3ad2ant3 NRCRingXBYVDXUnitRX·˙Z=YX·˙Z=Y
20 1 2 3 4 slesolvec NRRingXBYVX·˙Z=YZV
21 17 19 20 sylc NRCRingXBYVDXUnitRX·˙Z=YZV
22 21 3 eleqtrdi NRCRingXBYVDXUnitRX·˙Z=YZBaseRN
23 eqid RmaMulNNN=RmaMulNNN
24 9 13 anim12ci NRCRingXBYVNFinRRing
25 24 3adant3 NRCRingXBYVDXUnitRX·˙Z=YNFinRRing
26 1 matring NFinRRingARing
27 25 26 syl NRCRingXBYVDXUnitRX·˙Z=YARing
28 eqid UnitA=UnitA
29 eqid UnitR=UnitR
30 1 5 2 28 29 matunit RCRingXBXUnitADXUnitR
31 30 bicomd RCRingXBDXUnitRXUnitA
32 31 ad2ant2lr NRCRingXBYVDXUnitRXUnitA
33 32 biimpd NRCRingXBYVDXUnitRXUnitA
34 33 adantrd NRCRingXBYVDXUnitRX·˙Z=YXUnitA
35 34 3impia NRCRingXBYVDXUnitRX·˙Z=YXUnitA
36 eqid BaseA=BaseA
37 28 6 36 ringinvcl ARingXUnitAIXBaseA
38 27 35 37 syl2anc NRCRingXBYVDXUnitRX·˙Z=YIXBaseA
39 2 eleq2i XBXBaseA
40 39 biimpi XBXBaseA
41 40 adantr XBYVXBaseA
42 41 3ad2ant2 NRCRingXBYVDXUnitRX·˙Z=YXBaseA
43 1 7 4 10 14 22 23 38 42 mavmulass NRCRingXBYVDXUnitRX·˙Z=YIXRmaMulNNNX·˙Z=IX·˙X·˙Z
44 simpr NRCRingRCRing
45 44 13 anim12ci NRCRingXBYVNFinRCRing
46 45 3adant3 NRCRingXBYVDXUnitRX·˙Z=YNFinRCRing
47 1 23 matmulr NFinRCRingRmaMulNNN=A
48 46 47 syl NRCRingXBYVDXUnitRX·˙Z=YRmaMulNNN=A
49 48 oveqd NRCRingXBYVDXUnitRX·˙Z=YIXRmaMulNNNX=IXAX
50 eqid A=A
51 eqid 1A=1A
52 28 6 50 51 unitlinv ARingXUnitAIXAX=1A
53 27 35 52 syl2anc NRCRingXBYVDXUnitRX·˙Z=YIXAX=1A
54 49 53 eqtrd NRCRingXBYVDXUnitRX·˙Z=YIXRmaMulNNNX=1A
55 54 oveq1d NRCRingXBYVDXUnitRX·˙Z=YIXRmaMulNNNX·˙Z=1A·˙Z
56 1 7 4 10 14 22 1mavmul NRCRingXBYVDXUnitRX·˙Z=Y1A·˙Z=Z
57 55 56 eqtrd NRCRingXBYVDXUnitRX·˙Z=YIXRmaMulNNNX·˙Z=Z
58 oveq2 X·˙Z=YIX·˙X·˙Z=IX·˙Y
59 58 adantl DXUnitRX·˙Z=YIX·˙X·˙Z=IX·˙Y
60 59 3ad2ant3 NRCRingXBYVDXUnitRX·˙Z=YIX·˙X·˙Z=IX·˙Y
61 43 57 60 3eqtr3d NRCRingXBYVDXUnitRX·˙Z=YZ=IX·˙Y