Metamath Proof Explorer


Theorem slesolinv

Description: The solution of a system of linear equations represented by a matrix with a unit as determinant is the multiplication of the inverse of the matrix with the right-hand side vector. (Contributed by AV, 10-Feb-2019) (Revised by AV, 28-Feb-2019)

Ref Expression
Hypotheses slesolex.a A = N Mat R
slesolex.b B = Base A
slesolex.v V = Base R N
slesolex.x · ˙ = R maVecMul N N
slesolex.d D = N maDet R
slesolinv.i I = inv r A
Assertion slesolinv N R CRing X B Y V D X Unit R X · ˙ Z = Y Z = I X · ˙ Y

Proof

Step Hyp Ref Expression
1 slesolex.a A = N Mat R
2 slesolex.b B = Base A
3 slesolex.v V = Base R N
4 slesolex.x · ˙ = R maVecMul N N
5 slesolex.d D = N maDet R
6 slesolinv.i I = inv r A
7 eqid Base R = Base R
8 crngring R CRing R Ring
9 8 adantl N R CRing R Ring
10 9 3ad2ant1 N R CRing X B Y V D X Unit R X · ˙ Z = Y R Ring
11 1 2 matrcl X B N Fin R V
12 11 simpld X B N Fin
13 12 adantr X B Y V N Fin
14 13 3ad2ant2 N R CRing X B Y V D X Unit R X · ˙ Z = Y N Fin
15 8 anim2i N R CRing N R Ring
16 15 anim1i N R CRing X B Y V N R Ring X B Y V
17 16 3adant3 N R CRing X B Y V D X Unit R X · ˙ Z = Y N R Ring X B Y V
18 simpr D X Unit R X · ˙ Z = Y X · ˙ Z = Y
19 18 3ad2ant3 N R CRing X B Y V D X Unit R X · ˙ Z = Y X · ˙ Z = Y
20 1 2 3 4 slesolvec N R Ring X B Y V X · ˙ Z = Y Z V
21 17 19 20 sylc N R CRing X B Y V D X Unit R X · ˙ Z = Y Z V
22 21 3 eleqtrdi N R CRing X B Y V D X Unit R X · ˙ Z = Y Z Base R N
23 eqid R maMul N N N = R maMul N N N
24 9 13 anim12ci N R CRing X B Y V N Fin R Ring
25 24 3adant3 N R CRing X B Y V D X Unit R X · ˙ Z = Y N Fin R Ring
26 1 matring N Fin R Ring A Ring
27 25 26 syl N R CRing X B Y V D X Unit R X · ˙ Z = Y A Ring
28 eqid Unit A = Unit A
29 eqid Unit R = Unit R
30 1 5 2 28 29 matunit R CRing X B X Unit A D X Unit R
31 30 bicomd R CRing X B D X Unit R X Unit A
32 31 ad2ant2lr N R CRing X B Y V D X Unit R X Unit A
33 32 biimpd N R CRing X B Y V D X Unit R X Unit A
34 33 adantrd N R CRing X B Y V D X Unit R X · ˙ Z = Y X Unit A
35 34 3impia N R CRing X B Y V D X Unit R X · ˙ Z = Y X Unit A
36 eqid Base A = Base A
37 28 6 36 ringinvcl A Ring X Unit A I X Base A
38 27 35 37 syl2anc N R CRing X B Y V D X Unit R X · ˙ Z = Y I X Base A
39 2 eleq2i X B X Base A
40 39 biimpi X B X Base A
41 40 adantr X B Y V X Base A
42 41 3ad2ant2 N R CRing X B Y V D X Unit R X · ˙ Z = Y X Base A
43 1 7 4 10 14 22 23 38 42 mavmulass N R CRing X B Y V D X Unit R X · ˙ Z = Y I X R maMul N N N X · ˙ Z = I X · ˙ X · ˙ Z
44 simpr N R CRing R CRing
45 44 13 anim12ci N R CRing X B Y V N Fin R CRing
46 45 3adant3 N R CRing X B Y V D X Unit R X · ˙ Z = Y N Fin R CRing
47 1 23 matmulr N Fin R CRing R maMul N N N = A
48 46 47 syl N R CRing X B Y V D X Unit R X · ˙ Z = Y R maMul N N N = A
49 48 oveqd N R CRing X B Y V D X Unit R X · ˙ Z = Y I X R maMul N N N X = I X A X
50 eqid A = A
51 eqid 1 A = 1 A
52 28 6 50 51 unitlinv A Ring X Unit A I X A X = 1 A
53 27 35 52 syl2anc N R CRing X B Y V D X Unit R X · ˙ Z = Y I X A X = 1 A
54 49 53 eqtrd N R CRing X B Y V D X Unit R X · ˙ Z = Y I X R maMul N N N X = 1 A
55 54 oveq1d N R CRing X B Y V D X Unit R X · ˙ Z = Y I X R maMul N N N X · ˙ Z = 1 A · ˙ Z
56 1 7 4 10 14 22 1mavmul N R CRing X B Y V D X Unit R X · ˙ Z = Y 1 A · ˙ Z = Z
57 55 56 eqtrd N R CRing X B Y V D X Unit R X · ˙ Z = Y I X R maMul N N N X · ˙ Z = Z
58 oveq2 X · ˙ Z = Y I X · ˙ X · ˙ Z = I X · ˙ Y
59 58 adantl D X Unit R X · ˙ Z = Y I X · ˙ X · ˙ Z = I X · ˙ Y
60 59 3ad2ant3 N R CRing X B Y V D X Unit R X · ˙ Z = Y I X · ˙ X · ˙ Z = I X · ˙ Y
61 43 57 60 3eqtr3d N R CRing X B Y V D X Unit R X · ˙ Z = Y Z = I X · ˙ Y