| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slesolex.a |
|
| 2 |
|
slesolex.b |
|
| 3 |
|
slesolex.v |
|
| 4 |
|
slesolex.x |
|
| 5 |
|
slesolex.d |
|
| 6 |
|
slesolinv.i |
|
| 7 |
|
eqid |
|
| 8 |
|
crngring |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
1 2
|
matrcl |
|
| 12 |
11
|
simpld |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
8
|
anim2i |
|
| 16 |
15
|
anim1i |
|
| 17 |
16
|
3adant3 |
|
| 18 |
|
simpr |
|
| 19 |
18
|
3ad2ant3 |
|
| 20 |
1 2 3 4
|
slesolvec |
|
| 21 |
17 19 20
|
sylc |
|
| 22 |
21 3
|
eleqtrdi |
|
| 23 |
|
eqid |
|
| 24 |
9 13
|
anim12ci |
|
| 25 |
24
|
3adant3 |
|
| 26 |
1
|
matring |
|
| 27 |
25 26
|
syl |
|
| 28 |
|
eqid |
|
| 29 |
|
eqid |
|
| 30 |
1 5 2 28 29
|
matunit |
|
| 31 |
30
|
bicomd |
|
| 32 |
31
|
ad2ant2lr |
|
| 33 |
32
|
biimpd |
|
| 34 |
33
|
adantrd |
|
| 35 |
34
|
3impia |
|
| 36 |
|
eqid |
|
| 37 |
28 6 36
|
ringinvcl |
|
| 38 |
27 35 37
|
syl2anc |
|
| 39 |
2
|
eleq2i |
|
| 40 |
39
|
biimpi |
|
| 41 |
40
|
adantr |
|
| 42 |
41
|
3ad2ant2 |
|
| 43 |
1 7 4 10 14 22 23 38 42
|
mavmulass |
|
| 44 |
|
simpr |
|
| 45 |
44 13
|
anim12ci |
|
| 46 |
45
|
3adant3 |
|
| 47 |
1 23
|
matmulr |
|
| 48 |
46 47
|
syl |
|
| 49 |
48
|
oveqd |
|
| 50 |
|
eqid |
|
| 51 |
|
eqid |
|
| 52 |
28 6 50 51
|
unitlinv |
|
| 53 |
27 35 52
|
syl2anc |
|
| 54 |
49 53
|
eqtrd |
|
| 55 |
54
|
oveq1d |
|
| 56 |
1 7 4 10 14 22
|
1mavmul |
|
| 57 |
55 56
|
eqtrd |
|
| 58 |
|
oveq2 |
|
| 59 |
58
|
adantl |
|
| 60 |
59
|
3ad2ant3 |
|
| 61 |
43 57 60
|
3eqtr3d |
|