| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matunit.a |
|
| 2 |
|
matunit.d |
|
| 3 |
|
matunit.b |
|
| 4 |
|
matunit.u |
|
| 5 |
|
matunit.v |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
eqid |
|
| 9 |
|
eqid |
|
| 10 |
|
crngring |
|
| 11 |
10
|
ad2antrr |
|
| 12 |
2 1 3 6
|
mdetcl |
|
| 13 |
12
|
adantr |
|
| 14 |
2 1 3 6
|
mdetf |
|
| 15 |
14
|
ad2antrr |
|
| 16 |
1 3
|
matrcl |
|
| 17 |
16
|
simpld |
|
| 18 |
17
|
ad2antlr |
|
| 19 |
1
|
matring |
|
| 20 |
18 11 19
|
syl2anc |
|
| 21 |
|
eqid |
|
| 22 |
4 21 3
|
ringinvcl |
|
| 23 |
20 22
|
sylancom |
|
| 24 |
15 23
|
ffvelcdmd |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
4 21 25 26
|
unitrinv |
|
| 28 |
20 27
|
sylancom |
|
| 29 |
28
|
fveq2d |
|
| 30 |
|
simpll |
|
| 31 |
|
simplr |
|
| 32 |
1 3 2 7 25
|
mdetmul |
|
| 33 |
30 31 23 32
|
syl3anc |
|
| 34 |
2 1 26 8
|
mdet1 |
|
| 35 |
30 18 34
|
syl2anc |
|
| 36 |
29 33 35
|
3eqtr3d |
|
| 37 |
4 21 25 26
|
unitlinv |
|
| 38 |
20 37
|
sylancom |
|
| 39 |
38
|
fveq2d |
|
| 40 |
1 3 2 7 25
|
mdetmul |
|
| 41 |
30 23 31 40
|
syl3anc |
|
| 42 |
39 41 35
|
3eqtr3d |
|
| 43 |
6 7 8 5 9 11 13 24 36 42
|
invrvald |
|
| 44 |
43
|
simpld |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
1 45 2 3 4 5 9 21 46
|
matinv |
|
| 48 |
47
|
simpld |
|
| 49 |
48
|
3expa |
|
| 50 |
44 49
|
impbida |
|