Metamath Proof Explorer


Theorem matunit

Description: A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses matunit.a A=NMatR
matunit.d D=NmaDetR
matunit.b B=BaseA
matunit.u U=UnitA
matunit.v V=UnitR
Assertion matunit RCRingMBMUDMV

Proof

Step Hyp Ref Expression
1 matunit.a A=NMatR
2 matunit.d D=NmaDetR
3 matunit.b B=BaseA
4 matunit.u U=UnitA
5 matunit.v V=UnitR
6 eqid BaseR=BaseR
7 eqid R=R
8 eqid 1R=1R
9 eqid invrR=invrR
10 crngring RCRingRRing
11 10 ad2antrr RCRingMBMURRing
12 2 1 3 6 mdetcl RCRingMBDMBaseR
13 12 adantr RCRingMBMUDMBaseR
14 2 1 3 6 mdetf RCRingD:BBaseR
15 14 ad2antrr RCRingMBMUD:BBaseR
16 1 3 matrcl MBNFinRV
17 16 simpld MBNFin
18 17 ad2antlr RCRingMBMUNFin
19 1 matring NFinRRingARing
20 18 11 19 syl2anc RCRingMBMUARing
21 eqid invrA=invrA
22 4 21 3 ringinvcl ARingMUinvrAMB
23 20 22 sylancom RCRingMBMUinvrAMB
24 15 23 ffvelcdmd RCRingMBMUDinvrAMBaseR
25 eqid A=A
26 eqid 1A=1A
27 4 21 25 26 unitrinv ARingMUMAinvrAM=1A
28 20 27 sylancom RCRingMBMUMAinvrAM=1A
29 28 fveq2d RCRingMBMUDMAinvrAM=D1A
30 simpll RCRingMBMURCRing
31 simplr RCRingMBMUMB
32 1 3 2 7 25 mdetmul RCRingMBinvrAMBDMAinvrAM=DMRDinvrAM
33 30 31 23 32 syl3anc RCRingMBMUDMAinvrAM=DMRDinvrAM
34 2 1 26 8 mdet1 RCRingNFinD1A=1R
35 30 18 34 syl2anc RCRingMBMUD1A=1R
36 29 33 35 3eqtr3d RCRingMBMUDMRDinvrAM=1R
37 4 21 25 26 unitlinv ARingMUinvrAMAM=1A
38 20 37 sylancom RCRingMBMUinvrAMAM=1A
39 38 fveq2d RCRingMBMUDinvrAMAM=D1A
40 1 3 2 7 25 mdetmul RCRinginvrAMBMBDinvrAMAM=DinvrAMRDM
41 30 23 31 40 syl3anc RCRingMBMUDinvrAMAM=DinvrAMRDM
42 39 41 35 3eqtr3d RCRingMBMUDinvrAMRDM=1R
43 6 7 8 5 9 11 13 24 36 42 invrvald RCRingMBMUDMVinvrRDM=DinvrAM
44 43 simpld RCRingMBMUDMV
45 eqid NmaAdjuR=NmaAdjuR
46 eqid A=A
47 1 45 2 3 4 5 9 21 46 matinv RCRingMBDMVMUinvrAM=invrRDMANmaAdjuRM
48 47 simpld RCRingMBDMVMU
49 48 3expa RCRingMBDMVMU
50 44 49 impbida RCRingMBMUDMV