Description: A matrix is a unit in the ring of matrices iff its determinant is a unit in the underlying ring. (Contributed by Stefan O'Rear, 17-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | matunit.a | |
|
matunit.d | |
||
matunit.b | |
||
matunit.u | |
||
matunit.v | |
||
Assertion | matunit | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | matunit.a | |
|
2 | matunit.d | |
|
3 | matunit.b | |
|
4 | matunit.u | |
|
5 | matunit.v | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | eqid | |
|
10 | crngring | |
|
11 | 10 | ad2antrr | |
12 | 2 1 3 6 | mdetcl | |
13 | 12 | adantr | |
14 | 2 1 3 6 | mdetf | |
15 | 14 | ad2antrr | |
16 | 1 3 | matrcl | |
17 | 16 | simpld | |
18 | 17 | ad2antlr | |
19 | 1 | matring | |
20 | 18 11 19 | syl2anc | |
21 | eqid | |
|
22 | 4 21 3 | ringinvcl | |
23 | 20 22 | sylancom | |
24 | 15 23 | ffvelcdmd | |
25 | eqid | |
|
26 | eqid | |
|
27 | 4 21 25 26 | unitrinv | |
28 | 20 27 | sylancom | |
29 | 28 | fveq2d | |
30 | simpll | |
|
31 | simplr | |
|
32 | 1 3 2 7 25 | mdetmul | |
33 | 30 31 23 32 | syl3anc | |
34 | 2 1 26 8 | mdet1 | |
35 | 30 18 34 | syl2anc | |
36 | 29 33 35 | 3eqtr3d | |
37 | 4 21 25 26 | unitlinv | |
38 | 20 37 | sylancom | |
39 | 38 | fveq2d | |
40 | 1 3 2 7 25 | mdetmul | |
41 | 30 23 31 40 | syl3anc | |
42 | 39 41 35 | 3eqtr3d | |
43 | 6 7 8 5 9 11 13 24 36 42 | invrvald | |
44 | 43 | simpld | |
45 | eqid | |
|
46 | eqid | |
|
47 | 1 45 2 3 4 5 9 21 46 | matinv | |
48 | 47 | simpld | |
49 | 48 | 3expa | |
50 | 44 49 | impbida | |