Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in Lang p. 513. (Contributed by SO, 10-Jul-2018) (Proof shortened by AV, 25-Nov-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdet1.d | |
|
mdet1.a | |
||
mdet1.n | |
||
mdet1.o | |
||
Assertion | mdet1 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdet1.d | |
|
2 | mdet1.a | |
|
3 | mdet1.n | |
|
4 | mdet1.o | |
|
5 | id | |
|
6 | crngring | |
|
7 | 6 | anim1ci | |
8 | 2 | matring | |
9 | eqid | |
|
10 | 9 3 | ringidcl | |
11 | 7 8 10 | 3syl | |
12 | eqid | |
|
13 | 12 4 | ringidcl | |
14 | 6 13 | syl | |
15 | 14 | adantr | |
16 | 5 11 15 | jca32 | |
17 | eqid | |
|
18 | simplr | |
|
19 | 6 | adantr | |
20 | 19 | adantr | |
21 | simprl | |
|
22 | simprr | |
|
23 | 2 4 17 18 20 21 22 3 | mat1ov | |
24 | 23 | ralrimivva | |
25 | eqid | |
|
26 | eqid | |
|
27 | 1 2 9 25 17 12 26 | mdetdiagid | |
28 | 16 24 27 | sylc | |
29 | ringsrg | |
|
30 | 6 29 | syl | |
31 | hashcl | |
|
32 | 25 26 4 | srg1expzeq1 | |
33 | 30 31 32 | syl2an | |
34 | 28 33 | eqtrd | |