Metamath Proof Explorer


Theorem mdet1

Description: The determinant of the identity matrix is 1, i.e. the determinant function is normalized, see also definition in Lang p. 513. (Contributed by SO, 10-Jul-2018) (Proof shortened by AV, 25-Nov-2019)

Ref Expression
Hypotheses mdet1.d D=NmaDetR
mdet1.a A=NMatR
mdet1.n I=1A
mdet1.o 1˙=1R
Assertion mdet1 RCRingNFinDI=1˙

Proof

Step Hyp Ref Expression
1 mdet1.d D=NmaDetR
2 mdet1.a A=NMatR
3 mdet1.n I=1A
4 mdet1.o 1˙=1R
5 id RCRingNFinRCRingNFin
6 crngring RCRingRRing
7 6 anim1ci RCRingNFinNFinRRing
8 2 matring NFinRRingARing
9 eqid BaseA=BaseA
10 9 3 ringidcl ARingIBaseA
11 7 8 10 3syl RCRingNFinIBaseA
12 eqid BaseR=BaseR
13 12 4 ringidcl RRing1˙BaseR
14 6 13 syl RCRing1˙BaseR
15 14 adantr RCRingNFin1˙BaseR
16 5 11 15 jca32 RCRingNFinRCRingNFinIBaseA1˙BaseR
17 eqid 0R=0R
18 simplr RCRingNFiniNjNNFin
19 6 adantr RCRingNFinRRing
20 19 adantr RCRingNFiniNjNRRing
21 simprl RCRingNFiniNjNiN
22 simprr RCRingNFiniNjNjN
23 2 4 17 18 20 21 22 3 mat1ov RCRingNFiniNjNiIj=ifi=j1˙0R
24 23 ralrimivva RCRingNFiniNjNiIj=ifi=j1˙0R
25 eqid mulGrpR=mulGrpR
26 eqid mulGrpR=mulGrpR
27 1 2 9 25 17 12 26 mdetdiagid RCRingNFinIBaseA1˙BaseRiNjNiIj=ifi=j1˙0RDI=NmulGrpR1˙
28 16 24 27 sylc RCRingNFinDI=NmulGrpR1˙
29 ringsrg RRingRSRing
30 6 29 syl RCRingRSRing
31 hashcl NFinN0
32 25 26 4 srg1expzeq1 RSRingN0NmulGrpR1˙=1˙
33 30 31 32 syl2an RCRingNFinNmulGrpR1˙=1˙
34 28 33 eqtrd RCRingNFinDI=1˙