Metamath Proof Explorer


Theorem srg1expzeq1

Description: The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z . (Contributed by AV, 25-Nov-2019)

Ref Expression
Hypotheses srg1expzeq1.g G=mulGrpR
srg1expzeq1.t ·˙=G
srg1expzeq1.1 1˙=1R
Assertion srg1expzeq1 RSRingN0N·˙1˙=1˙

Proof

Step Hyp Ref Expression
1 srg1expzeq1.g G=mulGrpR
2 srg1expzeq1.t ·˙=G
3 srg1expzeq1.1 1˙=1R
4 1 srgmgp RSRingGMnd
5 eqid BaseG=BaseG
6 1 3 ringidval 1˙=0G
7 5 2 6 mulgnn0z GMndN0N·˙1˙=1˙
8 4 7 sylan RSRingN0N·˙1˙=1˙