Metamath Proof Explorer


Theorem srgmgp

Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018)

Ref Expression
Hypothesis srgmgp.g G=mulGrpR
Assertion srgmgp RSRingGMnd

Proof

Step Hyp Ref Expression
1 srgmgp.g G=mulGrpR
2 eqid BaseR=BaseR
3 eqid +R=+R
4 eqid R=R
5 eqid 0R=0R
6 2 1 3 4 5 issrg RSRingRCMndGMndxBaseRyBaseRzBaseRxRy+Rz=xRy+RxRzx+RyRz=xRz+RyRz0RRx=0RxR0R=0R
7 6 simp2bi RSRingGMnd