| Step |
Hyp |
Ref |
Expression |
| 1 |
|
issrg.b |
|
| 2 |
|
issrg.g |
|
| 3 |
|
issrg.p |
|
| 4 |
|
issrg.t |
|
| 5 |
|
issrg.0 |
|
| 6 |
2
|
eleq1i |
|
| 7 |
6
|
bicomi |
|
| 8 |
1
|
fvexi |
|
| 9 |
3
|
fvexi |
|
| 10 |
4
|
fvexi |
|
| 11 |
10
|
a1i |
|
| 12 |
5
|
fvexi |
|
| 13 |
12
|
a1i |
|
| 14 |
|
simplll |
|
| 15 |
|
simplr |
|
| 16 |
|
eqidd |
|
| 17 |
|
simpllr |
|
| 18 |
17
|
oveqd |
|
| 19 |
15 16 18
|
oveq123d |
|
| 20 |
15
|
oveqd |
|
| 21 |
15
|
oveqd |
|
| 22 |
17 20 21
|
oveq123d |
|
| 23 |
19 22
|
eqeq12d |
|
| 24 |
17
|
oveqd |
|
| 25 |
|
eqidd |
|
| 26 |
15 24 25
|
oveq123d |
|
| 27 |
15
|
oveqd |
|
| 28 |
17 21 27
|
oveq123d |
|
| 29 |
26 28
|
eqeq12d |
|
| 30 |
23 29
|
anbi12d |
|
| 31 |
14 30
|
raleqbidv |
|
| 32 |
14 31
|
raleqbidv |
|
| 33 |
|
simpr |
|
| 34 |
15 33 16
|
oveq123d |
|
| 35 |
34 33
|
eqeq12d |
|
| 36 |
15 16 33
|
oveq123d |
|
| 37 |
36 33
|
eqeq12d |
|
| 38 |
35 37
|
anbi12d |
|
| 39 |
32 38
|
anbi12d |
|
| 40 |
14 39
|
raleqbidv |
|
| 41 |
13 40
|
sbcied |
|
| 42 |
11 41
|
sbcied |
|
| 43 |
8 9 42
|
sbc2ie |
|
| 44 |
7 43
|
anbi12i |
|
| 45 |
44
|
anbi2i |
|
| 46 |
|
fveq2 |
|
| 47 |
46
|
eleq1d |
|
| 48 |
|
fveq2 |
|
| 49 |
48 1
|
eqtr4di |
|
| 50 |
|
fveq2 |
|
| 51 |
50 3
|
eqtr4di |
|
| 52 |
|
fveq2 |
|
| 53 |
52 4
|
eqtr4di |
|
| 54 |
|
fveq2 |
|
| 55 |
54 5
|
eqtr4di |
|
| 56 |
55
|
sbceq1d |
|
| 57 |
53 56
|
sbceqbid |
|
| 58 |
51 57
|
sbceqbid |
|
| 59 |
49 58
|
sbceqbid |
|
| 60 |
47 59
|
anbi12d |
|
| 61 |
|
df-srg |
|
| 62 |
60 61
|
elrab2 |
|
| 63 |
|
3anass |
|
| 64 |
45 62 63
|
3bitr4i |
|