Step |
Hyp |
Ref |
Expression |
1 |
|
issrg.b |
|- B = ( Base ` R ) |
2 |
|
issrg.g |
|- G = ( mulGrp ` R ) |
3 |
|
issrg.p |
|- .+ = ( +g ` R ) |
4 |
|
issrg.t |
|- .x. = ( .r ` R ) |
5 |
|
issrg.0 |
|- .0. = ( 0g ` R ) |
6 |
2
|
eleq1i |
|- ( G e. Mnd <-> ( mulGrp ` R ) e. Mnd ) |
7 |
6
|
bicomi |
|- ( ( mulGrp ` R ) e. Mnd <-> G e. Mnd ) |
8 |
1
|
fvexi |
|- B e. _V |
9 |
3
|
fvexi |
|- .+ e. _V |
10 |
4
|
fvexi |
|- .x. e. _V |
11 |
10
|
a1i |
|- ( ( b = B /\ p = .+ ) -> .x. e. _V ) |
12 |
5
|
fvexi |
|- .0. e. _V |
13 |
12
|
a1i |
|- ( ( ( b = B /\ p = .+ ) /\ t = .x. ) -> .0. e. _V ) |
14 |
|
simplll |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> b = B ) |
15 |
|
simplr |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> t = .x. ) |
16 |
|
eqidd |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> x = x ) |
17 |
|
simpllr |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> p = .+ ) |
18 |
17
|
oveqd |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( y p z ) = ( y .+ z ) ) |
19 |
15 16 18
|
oveq123d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t ( y p z ) ) = ( x .x. ( y .+ z ) ) ) |
20 |
15
|
oveqd |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t y ) = ( x .x. y ) ) |
21 |
15
|
oveqd |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t z ) = ( x .x. z ) ) |
22 |
17 20 21
|
oveq123d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t y ) p ( x t z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) |
23 |
19 22
|
eqeq12d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) <-> ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) ) ) |
24 |
17
|
oveqd |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x p y ) = ( x .+ y ) ) |
25 |
|
eqidd |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> z = z ) |
26 |
15 24 25
|
oveq123d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x p y ) t z ) = ( ( x .+ y ) .x. z ) ) |
27 |
15
|
oveqd |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( y t z ) = ( y .x. z ) ) |
28 |
17 21 27
|
oveq123d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t z ) p ( y t z ) ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) |
29 |
26 28
|
eqeq12d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) <-> ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) |
30 |
23 29
|
anbi12d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
31 |
14 30
|
raleqbidv |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
32 |
14 31
|
raleqbidv |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) <-> A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) ) ) |
33 |
|
simpr |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> n = .0. ) |
34 |
15 33 16
|
oveq123d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( n t x ) = ( .0. .x. x ) ) |
35 |
34 33
|
eqeq12d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( n t x ) = n <-> ( .0. .x. x ) = .0. ) ) |
36 |
15 16 33
|
oveq123d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( x t n ) = ( x .x. .0. ) ) |
37 |
36 33
|
eqeq12d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( x t n ) = n <-> ( x .x. .0. ) = .0. ) ) |
38 |
35 37
|
anbi12d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( ( n t x ) = n /\ ( x t n ) = n ) <-> ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) |
39 |
32 38
|
anbi12d |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
40 |
14 39
|
raleqbidv |
|- ( ( ( ( b = B /\ p = .+ ) /\ t = .x. ) /\ n = .0. ) -> ( A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
41 |
13 40
|
sbcied |
|- ( ( ( b = B /\ p = .+ ) /\ t = .x. ) -> ( [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
42 |
11 41
|
sbcied |
|- ( ( b = B /\ p = .+ ) -> ( [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
43 |
8 9 42
|
sbc2ie |
|- ( [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) |
44 |
7 43
|
anbi12i |
|- ( ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) <-> ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |
45 |
44
|
anbi2i |
|- ( ( R e. CMnd /\ ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) <-> ( R e. CMnd /\ ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) ) |
46 |
|
fveq2 |
|- ( r = R -> ( mulGrp ` r ) = ( mulGrp ` R ) ) |
47 |
46
|
eleq1d |
|- ( r = R -> ( ( mulGrp ` r ) e. Mnd <-> ( mulGrp ` R ) e. Mnd ) ) |
48 |
|
fveq2 |
|- ( r = R -> ( Base ` r ) = ( Base ` R ) ) |
49 |
48 1
|
eqtr4di |
|- ( r = R -> ( Base ` r ) = B ) |
50 |
|
fveq2 |
|- ( r = R -> ( +g ` r ) = ( +g ` R ) ) |
51 |
50 3
|
eqtr4di |
|- ( r = R -> ( +g ` r ) = .+ ) |
52 |
|
fveq2 |
|- ( r = R -> ( .r ` r ) = ( .r ` R ) ) |
53 |
52 4
|
eqtr4di |
|- ( r = R -> ( .r ` r ) = .x. ) |
54 |
|
fveq2 |
|- ( r = R -> ( 0g ` r ) = ( 0g ` R ) ) |
55 |
54 5
|
eqtr4di |
|- ( r = R -> ( 0g ` r ) = .0. ) |
56 |
55
|
sbceq1d |
|- ( r = R -> ( [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) |
57 |
53 56
|
sbceqbid |
|- ( r = R -> ( [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) |
58 |
51 57
|
sbceqbid |
|- ( r = R -> ( [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) |
59 |
49 58
|
sbceqbid |
|- ( r = R -> ( [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) <-> [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) |
60 |
47 59
|
anbi12d |
|- ( r = R -> ( ( ( mulGrp ` r ) e. Mnd /\ [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) <-> ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) ) |
61 |
|
df-srg |
|- SRing = { r e. CMnd | ( ( mulGrp ` r ) e. Mnd /\ [. ( Base ` r ) / b ]. [. ( +g ` r ) / p ]. [. ( .r ` r ) / t ]. [. ( 0g ` r ) / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) } |
62 |
60 61
|
elrab2 |
|- ( R e. SRing <-> ( R e. CMnd /\ ( ( mulGrp ` R ) e. Mnd /\ [. B / b ]. [. .+ / p ]. [. .x. / t ]. [. .0. / n ]. A. x e. b ( A. y e. b A. z e. b ( ( x t ( y p z ) ) = ( ( x t y ) p ( x t z ) ) /\ ( ( x p y ) t z ) = ( ( x t z ) p ( y t z ) ) ) /\ ( ( n t x ) = n /\ ( x t n ) = n ) ) ) ) ) |
63 |
|
3anass |
|- ( ( R e. CMnd /\ G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) <-> ( R e. CMnd /\ ( G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) ) |
64 |
45 62 63
|
3bitr4i |
|- ( R e. SRing <-> ( R e. CMnd /\ G e. Mnd /\ A. x e. B ( A. y e. B A. z e. B ( ( x .x. ( y .+ z ) ) = ( ( x .x. y ) .+ ( x .x. z ) ) /\ ( ( x .+ y ) .x. z ) = ( ( x .x. z ) .+ ( y .x. z ) ) ) /\ ( ( .0. .x. x ) = .0. /\ ( x .x. .0. ) = .0. ) ) ) ) |