Metamath Proof Explorer


Theorem srgmgp

Description: A semiring is a monoid under multiplication. (Contributed by Thierry Arnoux, 21-Mar-2018)

Ref Expression
Hypothesis srgmgp.g
|- G = ( mulGrp ` R )
Assertion srgmgp
|- ( R e. SRing -> G e. Mnd )

Proof

Step Hyp Ref Expression
1 srgmgp.g
 |-  G = ( mulGrp ` R )
2 eqid
 |-  ( Base ` R ) = ( Base ` R )
3 eqid
 |-  ( +g ` R ) = ( +g ` R )
4 eqid
 |-  ( .r ` R ) = ( .r ` R )
5 eqid
 |-  ( 0g ` R ) = ( 0g ` R )
6 2 1 3 4 5 issrg
 |-  ( R e. SRing <-> ( R e. CMnd /\ G e. Mnd /\ A. x e. ( Base ` R ) ( A. y e. ( Base ` R ) A. z e. ( Base ` R ) ( ( x ( .r ` R ) ( y ( +g ` R ) z ) ) = ( ( x ( .r ` R ) y ) ( +g ` R ) ( x ( .r ` R ) z ) ) /\ ( ( x ( +g ` R ) y ) ( .r ` R ) z ) = ( ( x ( .r ` R ) z ) ( +g ` R ) ( y ( .r ` R ) z ) ) ) /\ ( ( ( 0g ` R ) ( .r ` R ) x ) = ( 0g ` R ) /\ ( x ( .r ` R ) ( 0g ` R ) ) = ( 0g ` R ) ) ) ) )
7 6 simp2bi
 |-  ( R e. SRing -> G e. Mnd )