Metamath Proof Explorer


Theorem srg1expzeq1

Description: The exponentiation (by a nonnegative integer) of the multiplicative identity of a semiring, analogous to mulgnn0z . (Contributed by AV, 25-Nov-2019)

Ref Expression
Hypotheses srg1expzeq1.g
|- G = ( mulGrp ` R )
srg1expzeq1.t
|- .x. = ( .g ` G )
srg1expzeq1.1
|- .1. = ( 1r ` R )
Assertion srg1expzeq1
|- ( ( R e. SRing /\ N e. NN0 ) -> ( N .x. .1. ) = .1. )

Proof

Step Hyp Ref Expression
1 srg1expzeq1.g
 |-  G = ( mulGrp ` R )
2 srg1expzeq1.t
 |-  .x. = ( .g ` G )
3 srg1expzeq1.1
 |-  .1. = ( 1r ` R )
4 1 srgmgp
 |-  ( R e. SRing -> G e. Mnd )
5 eqid
 |-  ( Base ` G ) = ( Base ` G )
6 1 3 ringidval
 |-  .1. = ( 0g ` G )
7 5 2 6 mulgnn0z
 |-  ( ( G e. Mnd /\ N e. NN0 ) -> ( N .x. .1. ) = .1. )
8 4 7 sylan
 |-  ( ( R e. SRing /\ N e. NN0 ) -> ( N .x. .1. ) = .1. )