Description: The determinant of a diagonal matrix with identical entries is the power of the entry in the diagonal. (Contributed by AV, 17-Aug-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | mdetdiag.d | |
|
mdetdiag.a | |
||
mdetdiag.b | |
||
mdetdiag.g | |
||
mdetdiag.0 | |
||
mdetdiagid.c | |
||
mdetdiagid.t | |
||
Assertion | mdetdiagid | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | mdetdiag.d | |
|
2 | mdetdiag.a | |
|
3 | mdetdiag.b | |
|
4 | mdetdiag.g | |
|
5 | mdetdiag.0 | |
|
6 | mdetdiagid.c | |
|
7 | mdetdiagid.t | |
|
8 | simpl | |
|
9 | 8 | adantr | |
10 | simpr | |
|
11 | 10 | adantr | |
12 | simpl | |
|
13 | 12 | adantl | |
14 | 9 11 13 | 3jca | |
15 | 14 | adantr | |
16 | id | |
|
17 | ifnefalse | |
|
18 | 17 | adantl | |
19 | 16 18 | sylan9eqr | |
20 | 19 | exp31 | |
21 | 20 | com23 | |
22 | 21 | ralimdva | |
23 | 22 | ralimdva | |
24 | 23 | imp | |
25 | 1 2 3 4 5 | mdetdiag | |
26 | 15 24 25 | sylc | |
27 | oveq1 | |
|
28 | equequ1 | |
|
29 | 28 | ifbid | |
30 | 27 29 | eqeq12d | |
31 | oveq2 | |
|
32 | equequ2 | |
|
33 | 32 | ifbid | |
34 | 31 33 | eqeq12d | |
35 | 30 34 | rspc2v | |
36 | 35 | anidms | |
37 | 36 | adantl | |
38 | 37 | imp | |
39 | equid | |
|
40 | 39 | iftruei | |
41 | 38 40 | eqtrdi | |
42 | 41 | an32s | |
43 | 42 | mpteq2dva | |
44 | 43 | oveq2d | |
45 | 4 | crngmgp | |
46 | cmnmnd | |
|
47 | 45 46 | syl | |
48 | 47 | adantr | |
49 | simpr | |
|
50 | 4 6 | mgpbas | |
51 | 50 7 | gsumconst | |
52 | 48 10 49 51 | syl2an3an | |
53 | 52 | adantr | |
54 | 26 44 53 | 3eqtrd | |
55 | 54 | ex | |