Metamath Proof Explorer


Theorem mdetdiagid

Description: The determinant of a diagonal matrix with identical entries is the power of the entry in the diagonal. (Contributed by AV, 17-Aug-2019)

Ref Expression
Hypotheses mdetdiag.d D=NmaDetR
mdetdiag.a A=NMatR
mdetdiag.b B=BaseA
mdetdiag.g G=mulGrpR
mdetdiag.0 0˙=0R
mdetdiagid.c C=BaseR
mdetdiagid.t ·˙=G
Assertion mdetdiagid RCRingNFinMBXCiNjNiMj=ifi=jX0˙DM=N·˙X

Proof

Step Hyp Ref Expression
1 mdetdiag.d D=NmaDetR
2 mdetdiag.a A=NMatR
3 mdetdiag.b B=BaseA
4 mdetdiag.g G=mulGrpR
5 mdetdiag.0 0˙=0R
6 mdetdiagid.c C=BaseR
7 mdetdiagid.t ·˙=G
8 simpl RCRingNFinRCRing
9 8 adantr RCRingNFinMBXCRCRing
10 simpr RCRingNFinNFin
11 10 adantr RCRingNFinMBXCNFin
12 simpl MBXCMB
13 12 adantl RCRingNFinMBXCMB
14 9 11 13 3jca RCRingNFinMBXCRCRingNFinMB
15 14 adantr RCRingNFinMBXCiNjNiMj=ifi=jX0˙RCRingNFinMB
16 id iMj=ifi=jX0˙iMj=ifi=jX0˙
17 ifnefalse ijifi=jX0˙=0˙
18 17 adantl RCRingNFinMBXCiNjNijifi=jX0˙=0˙
19 16 18 sylan9eqr RCRingNFinMBXCiNjNijiMj=ifi=jX0˙iMj=0˙
20 19 exp31 RCRingNFinMBXCiNjNijiMj=ifi=jX0˙iMj=0˙
21 20 com23 RCRingNFinMBXCiNjNiMj=ifi=jX0˙ijiMj=0˙
22 21 ralimdva RCRingNFinMBXCiNjNiMj=ifi=jX0˙jNijiMj=0˙
23 22 ralimdva RCRingNFinMBXCiNjNiMj=ifi=jX0˙iNjNijiMj=0˙
24 23 imp RCRingNFinMBXCiNjNiMj=ifi=jX0˙iNjNijiMj=0˙
25 1 2 3 4 5 mdetdiag RCRingNFinMBiNjNijiMj=0˙DM=GkNkMk
26 15 24 25 sylc RCRingNFinMBXCiNjNiMj=ifi=jX0˙DM=GkNkMk
27 oveq1 i=kiMj=kMj
28 equequ1 i=ki=jk=j
29 28 ifbid i=kifi=jX0˙=ifk=jX0˙
30 27 29 eqeq12d i=kiMj=ifi=jX0˙kMj=ifk=jX0˙
31 oveq2 j=kkMj=kMk
32 equequ2 j=kk=jk=k
33 32 ifbid j=kifk=jX0˙=ifk=kX0˙
34 31 33 eqeq12d j=kkMj=ifk=jX0˙kMk=ifk=kX0˙
35 30 34 rspc2v kNkNiNjNiMj=ifi=jX0˙kMk=ifk=kX0˙
36 35 anidms kNiNjNiMj=ifi=jX0˙kMk=ifk=kX0˙
37 36 adantl RCRingNFinMBXCkNiNjNiMj=ifi=jX0˙kMk=ifk=kX0˙
38 37 imp RCRingNFinMBXCkNiNjNiMj=ifi=jX0˙kMk=ifk=kX0˙
39 equid k=k
40 39 iftruei ifk=kX0˙=X
41 38 40 eqtrdi RCRingNFinMBXCkNiNjNiMj=ifi=jX0˙kMk=X
42 41 an32s RCRingNFinMBXCiNjNiMj=ifi=jX0˙kNkMk=X
43 42 mpteq2dva RCRingNFinMBXCiNjNiMj=ifi=jX0˙kNkMk=kNX
44 43 oveq2d RCRingNFinMBXCiNjNiMj=ifi=jX0˙GkNkMk=GkNX
45 4 crngmgp RCRingGCMnd
46 cmnmnd GCMndGMnd
47 45 46 syl RCRingGMnd
48 47 adantr RCRingNFinGMnd
49 simpr MBXCXC
50 4 6 mgpbas C=BaseG
51 50 7 gsumconst GMndNFinXCGkNX=N·˙X
52 48 10 49 51 syl2an3an RCRingNFinMBXCGkNX=N·˙X
53 52 adantr RCRingNFinMBXCiNjNiMj=ifi=jX0˙GkNX=N·˙X
54 26 44 53 3eqtrd RCRingNFinMBXCiNjNiMj=ifi=jX0˙DM=N·˙X
55 54 ex RCRingNFinMBXCiNjNiMj=ifi=jX0˙DM=N·˙X