Metamath Proof Explorer


Theorem mdetdiagid

Description: The determinant of a diagonal matrix with identical entries is the power of the entry in the diagonal. (Contributed by AV, 17-Aug-2019)

Ref Expression
Hypotheses mdetdiag.d D = N maDet R
mdetdiag.a A = N Mat R
mdetdiag.b B = Base A
mdetdiag.g G = mulGrp R
mdetdiag.0 0 ˙ = 0 R
mdetdiagid.c C = Base R
mdetdiagid.t · ˙ = G
Assertion mdetdiagid R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ D M = N · ˙ X

Proof

Step Hyp Ref Expression
1 mdetdiag.d D = N maDet R
2 mdetdiag.a A = N Mat R
3 mdetdiag.b B = Base A
4 mdetdiag.g G = mulGrp R
5 mdetdiag.0 0 ˙ = 0 R
6 mdetdiagid.c C = Base R
7 mdetdiagid.t · ˙ = G
8 simpl R CRing N Fin R CRing
9 8 adantr R CRing N Fin M B X C R CRing
10 simpr R CRing N Fin N Fin
11 10 adantr R CRing N Fin M B X C N Fin
12 simpl M B X C M B
13 12 adantl R CRing N Fin M B X C M B
14 9 11 13 3jca R CRing N Fin M B X C R CRing N Fin M B
15 14 adantr R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ R CRing N Fin M B
16 id i M j = if i = j X 0 ˙ i M j = if i = j X 0 ˙
17 ifnefalse i j if i = j X 0 ˙ = 0 ˙
18 17 adantl R CRing N Fin M B X C i N j N i j if i = j X 0 ˙ = 0 ˙
19 16 18 sylan9eqr R CRing N Fin M B X C i N j N i j i M j = if i = j X 0 ˙ i M j = 0 ˙
20 19 exp31 R CRing N Fin M B X C i N j N i j i M j = if i = j X 0 ˙ i M j = 0 ˙
21 20 com23 R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ i j i M j = 0 ˙
22 21 ralimdva R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ j N i j i M j = 0 ˙
23 22 ralimdva R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ i N j N i j i M j = 0 ˙
24 23 imp R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ i N j N i j i M j = 0 ˙
25 1 2 3 4 5 mdetdiag R CRing N Fin M B i N j N i j i M j = 0 ˙ D M = G k N k M k
26 15 24 25 sylc R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ D M = G k N k M k
27 oveq1 i = k i M j = k M j
28 equequ1 i = k i = j k = j
29 28 ifbid i = k if i = j X 0 ˙ = if k = j X 0 ˙
30 27 29 eqeq12d i = k i M j = if i = j X 0 ˙ k M j = if k = j X 0 ˙
31 oveq2 j = k k M j = k M k
32 equequ2 j = k k = j k = k
33 32 ifbid j = k if k = j X 0 ˙ = if k = k X 0 ˙
34 31 33 eqeq12d j = k k M j = if k = j X 0 ˙ k M k = if k = k X 0 ˙
35 30 34 rspc2v k N k N i N j N i M j = if i = j X 0 ˙ k M k = if k = k X 0 ˙
36 35 anidms k N i N j N i M j = if i = j X 0 ˙ k M k = if k = k X 0 ˙
37 36 adantl R CRing N Fin M B X C k N i N j N i M j = if i = j X 0 ˙ k M k = if k = k X 0 ˙
38 37 imp R CRing N Fin M B X C k N i N j N i M j = if i = j X 0 ˙ k M k = if k = k X 0 ˙
39 equid k = k
40 39 iftruei if k = k X 0 ˙ = X
41 38 40 eqtrdi R CRing N Fin M B X C k N i N j N i M j = if i = j X 0 ˙ k M k = X
42 41 an32s R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ k N k M k = X
43 42 mpteq2dva R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ k N k M k = k N X
44 43 oveq2d R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ G k N k M k = G k N X
45 4 crngmgp R CRing G CMnd
46 cmnmnd G CMnd G Mnd
47 45 46 syl R CRing G Mnd
48 47 adantr R CRing N Fin G Mnd
49 simpr M B X C X C
50 4 6 mgpbas C = Base G
51 50 7 gsumconst G Mnd N Fin X C G k N X = N · ˙ X
52 48 10 49 51 syl2an3an R CRing N Fin M B X C G k N X = N · ˙ X
53 52 adantr R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ G k N X = N · ˙ X
54 26 44 53 3eqtrd R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ D M = N · ˙ X
55 54 ex R CRing N Fin M B X C i N j N i M j = if i = j X 0 ˙ D M = N · ˙ X