| Step | Hyp | Ref | Expression | 
						
							| 1 |  | mdetdiag.d |  | 
						
							| 2 |  | mdetdiag.a |  | 
						
							| 3 |  | mdetdiag.b |  | 
						
							| 4 |  | mdetdiag.g |  | 
						
							| 5 |  | mdetdiag.0 |  | 
						
							| 6 |  | simpl3 |  | 
						
							| 7 |  | eqid |  | 
						
							| 8 |  | eqid |  | 
						
							| 9 |  | eqid |  | 
						
							| 10 |  | eqid |  | 
						
							| 11 | 1 2 3 7 8 9 10 4 | mdetleib |  | 
						
							| 12 | 6 11 | syl |  | 
						
							| 13 |  | simpl1 |  | 
						
							| 14 | 13 | ad2antrr |  | 
						
							| 15 | 6 | ad2antrr |  | 
						
							| 16 |  | simpr |  | 
						
							| 17 | 2 3 4 8 9 10 | madetsumid |  | 
						
							| 18 | 14 15 16 17 | syl3anc |  | 
						
							| 19 |  | iftrue |  | 
						
							| 20 | 19 | eqcomd |  | 
						
							| 21 | 20 | adantl |  | 
						
							| 22 | 18 21 | eqtrd |  | 
						
							| 23 |  | simplll |  | 
						
							| 24 |  | simpr |  | 
						
							| 25 | 24 | ad2antrr |  | 
						
							| 26 |  | simpr |  | 
						
							| 27 |  | neqne |  | 
						
							| 28 | 26 27 | anim12i |  | 
						
							| 29 | 1 2 3 4 5 7 8 9 10 | mdetdiaglem |  | 
						
							| 30 | 23 25 28 29 | syl3anc |  | 
						
							| 31 |  | iffalse |  | 
						
							| 32 | 31 | adantl |  | 
						
							| 33 | 32 | eqcomd |  | 
						
							| 34 | 30 33 | eqtrd |  | 
						
							| 35 | 22 34 | pm2.61dan |  | 
						
							| 36 | 35 | mpteq2dva |  | 
						
							| 37 | 36 | oveq2d |  | 
						
							| 38 |  | crngring |  | 
						
							| 39 |  | ringmnd |  | 
						
							| 40 | 38 39 | syl |  | 
						
							| 41 | 40 | 3ad2ant1 |  | 
						
							| 42 | 41 | adantr |  | 
						
							| 43 |  | fvexd |  | 
						
							| 44 |  | eqid |  | 
						
							| 45 | 44 | symgid |  | 
						
							| 46 | 45 | 3ad2ant2 |  | 
						
							| 47 | 44 | symggrp |  | 
						
							| 48 | 47 | 3ad2ant2 |  | 
						
							| 49 |  | eqid |  | 
						
							| 50 | 7 49 | grpidcl |  | 
						
							| 51 | 48 50 | syl |  | 
						
							| 52 | 46 51 | eqeltrd |  | 
						
							| 53 | 52 | adantr |  | 
						
							| 54 |  | eqid |  | 
						
							| 55 |  | eqid |  | 
						
							| 56 | 4 55 | mgpbas |  | 
						
							| 57 | 4 | crngmgp |  | 
						
							| 58 | 57 | 3ad2ant1 |  | 
						
							| 59 | 58 | adantr |  | 
						
							| 60 |  | simpl2 |  | 
						
							| 61 |  | simpr |  | 
						
							| 62 | 3 | eleq2i |  | 
						
							| 63 | 62 | biimpi |  | 
						
							| 64 | 63 | 3ad2ant3 |  | 
						
							| 65 | 64 | ad2antrr |  | 
						
							| 66 | 2 55 | matecl |  | 
						
							| 67 | 61 61 65 66 | syl3anc |  | 
						
							| 68 | 67 | ralrimiva |  | 
						
							| 69 | 56 59 60 68 | gsummptcl |  | 
						
							| 70 | 5 42 43 53 54 69 | gsummptif1n0 |  | 
						
							| 71 | 12 37 70 | 3eqtrd |  | 
						
							| 72 | 71 | ex |  |