Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019) (Proof shortened by AV, 11-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummpt1n0.0 | ||
| gsummpt1n0.g | |||
| gsummpt1n0.i | |||
| gsummpt1n0.x | |||
| gsummpt1n0.f | |||
| gsummptif1n0.a | |||
| Assertion | gsummptif1n0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummpt1n0.0 | ||
| 2 | gsummpt1n0.g | ||
| 3 | gsummpt1n0.i | ||
| 4 | gsummpt1n0.x | ||
| 5 | gsummpt1n0.f | ||
| 6 | gsummptif1n0.a | ||
| 7 | 6 | ralrimivw | |
| 8 | 1 2 3 4 5 7 | gsummpt1n0 | |
| 9 | csbconstg | ||
| 10 | 4 9 | syl | |
| 11 | 8 10 | eqtrd |