Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 . (Contributed by AV, 11-Oct-2019)
Ref | Expression | ||
---|---|---|---|
Hypotheses | gsummpt1n0.0 | |
|
gsummpt1n0.g | |
||
gsummpt1n0.i | |
||
gsummpt1n0.x | |
||
gsummpt1n0.f | |
||
gsummpt1n0.a | |
||
Assertion | gsummpt1n0 | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | gsummpt1n0.0 | |
|
2 | gsummpt1n0.g | |
|
3 | gsummpt1n0.i | |
|
4 | gsummpt1n0.x | |
|
5 | gsummpt1n0.f | |
|
6 | gsummpt1n0.a | |
|
7 | eqid | |
|
8 | 6 | r19.21bi | |
9 | 7 1 | mndidcl | |
10 | 2 9 | syl | |
11 | 10 | adantr | |
12 | 8 11 | ifcld | |
13 | 12 5 | fmptd | |
14 | 5 | oveq1i | |
15 | eldifsni | |
|
16 | 15 | adantl | |
17 | ifnefalse | |
|
18 | 16 17 | syl | |
19 | 18 3 | suppss2 | |
20 | 14 19 | eqsstrid | |
21 | 7 1 2 3 4 13 20 | gsumpt | |
22 | nfcv | |
|
23 | nfv | |
|
24 | nfcsb1v | |
|
25 | nfcv | |
|
26 | 23 24 25 | nfif | |
27 | eqeq1 | |
|
28 | csbeq1a | |
|
29 | 27 28 | ifbieq1d | |
30 | 22 26 29 | cbvmpt | |
31 | 5 30 | eqtri | |
32 | iftrue | |
|
33 | csbeq1 | |
|
34 | 32 33 | eqtrd | |
35 | rspcsbela | |
|
36 | 4 6 35 | syl2anc | |
37 | 31 34 4 36 | fvmptd3 | |
38 | 21 37 | eqtrd | |