Metamath Proof Explorer


Theorem gsummpt1n0

Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 . (Contributed by AV, 11-Oct-2019)

Ref Expression
Hypotheses gsummpt1n0.0 0 ˙ = 0 G
gsummpt1n0.g φ G Mnd
gsummpt1n0.i φ I W
gsummpt1n0.x φ X I
gsummpt1n0.f F = n I if n = X A 0 ˙
gsummpt1n0.a φ n I A Base G
Assertion gsummpt1n0 φ G F = X / n A

Proof

Step Hyp Ref Expression
1 gsummpt1n0.0 0 ˙ = 0 G
2 gsummpt1n0.g φ G Mnd
3 gsummpt1n0.i φ I W
4 gsummpt1n0.x φ X I
5 gsummpt1n0.f F = n I if n = X A 0 ˙
6 gsummpt1n0.a φ n I A Base G
7 eqid Base G = Base G
8 6 r19.21bi φ n I A Base G
9 7 1 mndidcl G Mnd 0 ˙ Base G
10 2 9 syl φ 0 ˙ Base G
11 10 adantr φ n I 0 ˙ Base G
12 8 11 ifcld φ n I if n = X A 0 ˙ Base G
13 12 5 fmptd φ F : I Base G
14 5 oveq1i F supp 0 ˙ = n I if n = X A 0 ˙ supp 0 ˙
15 eldifsni n I X n X
16 15 adantl φ n I X n X
17 ifnefalse n X if n = X A 0 ˙ = 0 ˙
18 16 17 syl φ n I X if n = X A 0 ˙ = 0 ˙
19 18 3 suppss2 φ n I if n = X A 0 ˙ supp 0 ˙ X
20 14 19 eqsstrid φ F supp 0 ˙ X
21 7 1 2 3 4 13 20 gsumpt φ G F = F X
22 nfcv _ y if n = X A 0 ˙
23 nfv n y = X
24 nfcsb1v _ n y / n A
25 nfcv _ n 0 ˙
26 23 24 25 nfif _ n if y = X y / n A 0 ˙
27 eqeq1 n = y n = X y = X
28 csbeq1a n = y A = y / n A
29 27 28 ifbieq1d n = y if n = X A 0 ˙ = if y = X y / n A 0 ˙
30 22 26 29 cbvmpt n I if n = X A 0 ˙ = y I if y = X y / n A 0 ˙
31 5 30 eqtri F = y I if y = X y / n A 0 ˙
32 iftrue y = X if y = X y / n A 0 ˙ = y / n A
33 csbeq1 y = X y / n A = X / n A
34 32 33 eqtrd y = X if y = X y / n A 0 ˙ = X / n A
35 rspcsbela X I n I A Base G X / n A Base G
36 4 6 35 syl2anc φ X / n A Base G
37 31 34 4 36 fvmptd3 φ F X = X / n A
38 21 37 eqtrd φ G F = X / n A