Metamath Proof Explorer


Theorem gsummpt1n0

Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. More general version of gsummptif1n0 . (Contributed by AV, 11-Oct-2019)

Ref Expression
Hypotheses gsummpt1n0.0 0˙=0G
gsummpt1n0.g φGMnd
gsummpt1n0.i φIW
gsummpt1n0.x φXI
gsummpt1n0.f F=nIifn=XA0˙
gsummpt1n0.a φnIABaseG
Assertion gsummpt1n0 φGF=X/nA

Proof

Step Hyp Ref Expression
1 gsummpt1n0.0 0˙=0G
2 gsummpt1n0.g φGMnd
3 gsummpt1n0.i φIW
4 gsummpt1n0.x φXI
5 gsummpt1n0.f F=nIifn=XA0˙
6 gsummpt1n0.a φnIABaseG
7 eqid BaseG=BaseG
8 6 r19.21bi φnIABaseG
9 7 1 mndidcl GMnd0˙BaseG
10 2 9 syl φ0˙BaseG
11 10 adantr φnI0˙BaseG
12 8 11 ifcld φnIifn=XA0˙BaseG
13 12 5 fmptd φF:IBaseG
14 5 oveq1i Fsupp0˙=nIifn=XA0˙supp0˙
15 eldifsni nIXnX
16 15 adantl φnIXnX
17 ifnefalse nXifn=XA0˙=0˙
18 16 17 syl φnIXifn=XA0˙=0˙
19 18 3 suppss2 φnIifn=XA0˙supp0˙X
20 14 19 eqsstrid φFsupp0˙X
21 7 1 2 3 4 13 20 gsumpt φGF=FX
22 nfcv _yifn=XA0˙
23 nfv ny=X
24 nfcsb1v _ny/nA
25 nfcv _n0˙
26 23 24 25 nfif _nify=Xy/nA0˙
27 eqeq1 n=yn=Xy=X
28 csbeq1a n=yA=y/nA
29 27 28 ifbieq1d n=yifn=XA0˙=ify=Xy/nA0˙
30 22 26 29 cbvmpt nIifn=XA0˙=yIify=Xy/nA0˙
31 5 30 eqtri F=yIify=Xy/nA0˙
32 iftrue y=Xify=Xy/nA0˙=y/nA
33 csbeq1 y=Xy/nA=X/nA
34 32 33 eqtrd y=Xify=Xy/nA0˙=X/nA
35 rspcsbela XInIABaseGX/nABaseG
36 4 6 35 syl2anc φX/nABaseG
37 31 34 4 36 fvmptd3 φFX=X/nA
38 21 37 eqtrd φGF=X/nA