Step |
Hyp |
Ref |
Expression |
1 |
|
gsummpt1n0.0 |
|- .0. = ( 0g ` G ) |
2 |
|
gsummpt1n0.g |
|- ( ph -> G e. Mnd ) |
3 |
|
gsummpt1n0.i |
|- ( ph -> I e. W ) |
4 |
|
gsummpt1n0.x |
|- ( ph -> X e. I ) |
5 |
|
gsummpt1n0.f |
|- F = ( n e. I |-> if ( n = X , A , .0. ) ) |
6 |
|
gsummpt1n0.a |
|- ( ph -> A. n e. I A e. ( Base ` G ) ) |
7 |
|
eqid |
|- ( Base ` G ) = ( Base ` G ) |
8 |
6
|
r19.21bi |
|- ( ( ph /\ n e. I ) -> A e. ( Base ` G ) ) |
9 |
7 1
|
mndidcl |
|- ( G e. Mnd -> .0. e. ( Base ` G ) ) |
10 |
2 9
|
syl |
|- ( ph -> .0. e. ( Base ` G ) ) |
11 |
10
|
adantr |
|- ( ( ph /\ n e. I ) -> .0. e. ( Base ` G ) ) |
12 |
8 11
|
ifcld |
|- ( ( ph /\ n e. I ) -> if ( n = X , A , .0. ) e. ( Base ` G ) ) |
13 |
12 5
|
fmptd |
|- ( ph -> F : I --> ( Base ` G ) ) |
14 |
5
|
oveq1i |
|- ( F supp .0. ) = ( ( n e. I |-> if ( n = X , A , .0. ) ) supp .0. ) |
15 |
|
eldifsni |
|- ( n e. ( I \ { X } ) -> n =/= X ) |
16 |
15
|
adantl |
|- ( ( ph /\ n e. ( I \ { X } ) ) -> n =/= X ) |
17 |
|
ifnefalse |
|- ( n =/= X -> if ( n = X , A , .0. ) = .0. ) |
18 |
16 17
|
syl |
|- ( ( ph /\ n e. ( I \ { X } ) ) -> if ( n = X , A , .0. ) = .0. ) |
19 |
18 3
|
suppss2 |
|- ( ph -> ( ( n e. I |-> if ( n = X , A , .0. ) ) supp .0. ) C_ { X } ) |
20 |
14 19
|
eqsstrid |
|- ( ph -> ( F supp .0. ) C_ { X } ) |
21 |
7 1 2 3 4 13 20
|
gsumpt |
|- ( ph -> ( G gsum F ) = ( F ` X ) ) |
22 |
|
nfcv |
|- F/_ y if ( n = X , A , .0. ) |
23 |
|
nfv |
|- F/ n y = X |
24 |
|
nfcsb1v |
|- F/_ n [_ y / n ]_ A |
25 |
|
nfcv |
|- F/_ n .0. |
26 |
23 24 25
|
nfif |
|- F/_ n if ( y = X , [_ y / n ]_ A , .0. ) |
27 |
|
eqeq1 |
|- ( n = y -> ( n = X <-> y = X ) ) |
28 |
|
csbeq1a |
|- ( n = y -> A = [_ y / n ]_ A ) |
29 |
27 28
|
ifbieq1d |
|- ( n = y -> if ( n = X , A , .0. ) = if ( y = X , [_ y / n ]_ A , .0. ) ) |
30 |
22 26 29
|
cbvmpt |
|- ( n e. I |-> if ( n = X , A , .0. ) ) = ( y e. I |-> if ( y = X , [_ y / n ]_ A , .0. ) ) |
31 |
5 30
|
eqtri |
|- F = ( y e. I |-> if ( y = X , [_ y / n ]_ A , .0. ) ) |
32 |
|
iftrue |
|- ( y = X -> if ( y = X , [_ y / n ]_ A , .0. ) = [_ y / n ]_ A ) |
33 |
|
csbeq1 |
|- ( y = X -> [_ y / n ]_ A = [_ X / n ]_ A ) |
34 |
32 33
|
eqtrd |
|- ( y = X -> if ( y = X , [_ y / n ]_ A , .0. ) = [_ X / n ]_ A ) |
35 |
|
rspcsbela |
|- ( ( X e. I /\ A. n e. I A e. ( Base ` G ) ) -> [_ X / n ]_ A e. ( Base ` G ) ) |
36 |
4 6 35
|
syl2anc |
|- ( ph -> [_ X / n ]_ A e. ( Base ` G ) ) |
37 |
31 34 4 36
|
fvmptd3 |
|- ( ph -> ( F ` X ) = [_ X / n ]_ A ) |
38 |
21 37
|
eqtrd |
|- ( ph -> ( G gsum F ) = [_ X / n ]_ A ) |