Metamath Proof Explorer


Theorem gsummptif1n0

Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019) (Proof shortened by AV, 11-Oct-2019)

Ref Expression
Hypotheses gsummpt1n0.0
|- .0. = ( 0g ` G )
gsummpt1n0.g
|- ( ph -> G e. Mnd )
gsummpt1n0.i
|- ( ph -> I e. W )
gsummpt1n0.x
|- ( ph -> X e. I )
gsummpt1n0.f
|- F = ( n e. I |-> if ( n = X , A , .0. ) )
gsummptif1n0.a
|- ( ph -> A e. ( Base ` G ) )
Assertion gsummptif1n0
|- ( ph -> ( G gsum F ) = A )

Proof

Step Hyp Ref Expression
1 gsummpt1n0.0
 |-  .0. = ( 0g ` G )
2 gsummpt1n0.g
 |-  ( ph -> G e. Mnd )
3 gsummpt1n0.i
 |-  ( ph -> I e. W )
4 gsummpt1n0.x
 |-  ( ph -> X e. I )
5 gsummpt1n0.f
 |-  F = ( n e. I |-> if ( n = X , A , .0. ) )
6 gsummptif1n0.a
 |-  ( ph -> A e. ( Base ` G ) )
7 6 ralrimivw
 |-  ( ph -> A. n e. I A e. ( Base ` G ) )
8 1 2 3 4 5 7 gsummpt1n0
 |-  ( ph -> ( G gsum F ) = [_ X / n ]_ A )
9 csbconstg
 |-  ( X e. I -> [_ X / n ]_ A = A )
10 4 9 syl
 |-  ( ph -> [_ X / n ]_ A = A )
11 8 10 eqtrd
 |-  ( ph -> ( G gsum F ) = A )