Description: If only one summand in a finite group sum is not zero, the whole sum equals this summand. (Contributed by AV, 17-Feb-2019) (Proof shortened by AV, 11-Oct-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | gsummpt1n0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| gsummpt1n0.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | ||
| gsummpt1n0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | ||
| gsummpt1n0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | ||
| gsummpt1n0.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) | ||
| gsummptif1n0.a | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐺 ) ) | ||
| Assertion | gsummptif1n0 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = 𝐴 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | gsummpt1n0.0 | ⊢ 0 = ( 0g ‘ 𝐺 ) | |
| 2 | gsummpt1n0.g | ⊢ ( 𝜑 → 𝐺 ∈ Mnd ) | |
| 3 | gsummpt1n0.i | ⊢ ( 𝜑 → 𝐼 ∈ 𝑊 ) | |
| 4 | gsummpt1n0.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐼 ) | |
| 5 | gsummpt1n0.f | ⊢ 𝐹 = ( 𝑛 ∈ 𝐼 ↦ if ( 𝑛 = 𝑋 , 𝐴 , 0 ) ) | |
| 6 | gsummptif1n0.a | ⊢ ( 𝜑 → 𝐴 ∈ ( Base ‘ 𝐺 ) ) | |
| 7 | 6 | ralrimivw | ⊢ ( 𝜑 → ∀ 𝑛 ∈ 𝐼 𝐴 ∈ ( Base ‘ 𝐺 ) ) |
| 8 | 1 2 3 4 5 7 | gsummpt1n0 | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = ⦋ 𝑋 / 𝑛 ⦌ 𝐴 ) |
| 9 | csbconstg | ⊢ ( 𝑋 ∈ 𝐼 → ⦋ 𝑋 / 𝑛 ⦌ 𝐴 = 𝐴 ) | |
| 10 | 4 9 | syl | ⊢ ( 𝜑 → ⦋ 𝑋 / 𝑛 ⦌ 𝐴 = 𝐴 ) |
| 11 | 8 10 | eqtrd | ⊢ ( 𝜑 → ( 𝐺 Σg 𝐹 ) = 𝐴 ) |