| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matinv.a |
|
| 2 |
|
matinv.j |
|
| 3 |
|
matinv.d |
|
| 4 |
|
matinv.b |
|
| 5 |
|
matinv.u |
|
| 6 |
|
matinv.v |
|
| 7 |
|
matinv.h |
|
| 8 |
|
matinv.i |
|
| 9 |
|
matinv.t |
|
| 10 |
|
eqid |
|
| 11 |
|
eqid |
|
| 12 |
1 4
|
matrcl |
|
| 13 |
12
|
simpld |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
|
simp1 |
|
| 16 |
1
|
matassa |
|
| 17 |
14 15 16
|
syl2anc |
|
| 18 |
|
assaring |
|
| 19 |
17 18
|
syl |
|
| 20 |
|
simp2 |
|
| 21 |
|
assalmod |
|
| 22 |
17 21
|
syl |
|
| 23 |
|
crngring |
|
| 24 |
23
|
3ad2ant1 |
|
| 25 |
|
simp3 |
|
| 26 |
|
eqid |
|
| 27 |
6 7 26
|
ringinvcl |
|
| 28 |
24 25 27
|
syl2anc |
|
| 29 |
1
|
matsca2 |
|
| 30 |
14 15 29
|
syl2anc |
|
| 31 |
30
|
fveq2d |
|
| 32 |
28 31
|
eleqtrd |
|
| 33 |
1 2 4
|
maduf |
|
| 34 |
33
|
3ad2ant1 |
|
| 35 |
34 20
|
ffvelcdmd |
|
| 36 |
|
eqid |
|
| 37 |
|
eqid |
|
| 38 |
4 36 9 37
|
lmodvscl |
|
| 39 |
22 32 35 38
|
syl3anc |
|
| 40 |
4 36 37 9 10
|
assaassr |
|
| 41 |
17 32 20 35 40
|
syl13anc |
|
| 42 |
1 4 2 3 11 10 9
|
madurid |
|
| 43 |
20 15 42
|
syl2anc |
|
| 44 |
43
|
oveq2d |
|
| 45 |
|
eqid |
|
| 46 |
|
eqid |
|
| 47 |
6 7 45 46
|
unitlinv |
|
| 48 |
24 25 47
|
syl2anc |
|
| 49 |
30
|
fveq2d |
|
| 50 |
49
|
oveqd |
|
| 51 |
30
|
fveq2d |
|
| 52 |
48 50 51
|
3eqtr3d |
|
| 53 |
52
|
oveq1d |
|
| 54 |
26 6
|
unitcl |
|
| 55 |
54
|
3ad2ant3 |
|
| 56 |
55 31
|
eleqtrd |
|
| 57 |
4 11
|
ringidcl |
|
| 58 |
19 57
|
syl |
|
| 59 |
|
eqid |
|
| 60 |
4 36 9 37 59
|
lmodvsass |
|
| 61 |
22 32 56 58 60
|
syl13anc |
|
| 62 |
|
eqid |
|
| 63 |
4 36 9 62
|
lmodvs1 |
|
| 64 |
22 58 63
|
syl2anc |
|
| 65 |
53 61 64
|
3eqtr3d |
|
| 66 |
41 44 65
|
3eqtrd |
|
| 67 |
4 36 37 9 10
|
assaass |
|
| 68 |
17 32 35 20 67
|
syl13anc |
|
| 69 |
1 4 2 3 11 10 9
|
madulid |
|
| 70 |
20 15 69
|
syl2anc |
|
| 71 |
70
|
oveq2d |
|
| 72 |
68 71 65
|
3eqtrd |
|
| 73 |
4 10 11 5 8 19 20 39 66 72
|
invrvald |
|