Metamath Proof Explorer


Definition df-assa

Description: Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a (commutative) ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Assertion df-assa AssAlg = w LMod Ring | [˙ Scalar w / f]˙ f CRing r Base f x Base w y Base w [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y

Detailed syntax breakdown

Step Hyp Ref Expression
0 casa class AssAlg
1 vw setvar w
2 clmod class LMod
3 crg class Ring
4 2 3 cin class LMod Ring
5 csca class Scalar
6 1 cv setvar w
7 6 5 cfv class Scalar w
8 vf setvar f
9 8 cv setvar f
10 ccrg class CRing
11 9 10 wcel wff f CRing
12 vr setvar r
13 cbs class Base
14 9 13 cfv class Base f
15 vx setvar x
16 6 13 cfv class Base w
17 vy setvar y
18 cvsca class 𝑠
19 6 18 cfv class w
20 vs setvar s
21 cmulr class 𝑟
22 6 21 cfv class w
23 vt setvar t
24 12 cv setvar r
25 20 cv setvar s
26 15 cv setvar x
27 24 26 25 co class r s x
28 23 cv setvar t
29 17 cv setvar y
30 27 29 28 co class r s x t y
31 26 29 28 co class x t y
32 24 31 25 co class r s x t y
33 30 32 wceq wff r s x t y = r s x t y
34 24 29 25 co class r s y
35 26 34 28 co class x t r s y
36 35 32 wceq wff x t r s y = r s x t y
37 33 36 wa wff r s x t y = r s x t y x t r s y = r s x t y
38 37 23 22 wsbc wff [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y
39 38 20 19 wsbc wff [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y
40 39 17 16 wral wff y Base w [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y
41 40 15 16 wral wff x Base w y Base w [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y
42 41 12 14 wral wff r Base f x Base w y Base w [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y
43 11 42 wa wff f CRing r Base f x Base w y Base w [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y
44 43 8 7 wsbc wff [˙ Scalar w / f]˙ f CRing r Base f x Base w y Base w [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y
45 44 1 4 crab class w LMod Ring | [˙ Scalar w / f]˙ f CRing r Base f x Base w y Base w [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y
46 0 45 wceq wff AssAlg = w LMod Ring | [˙ Scalar w / f]˙ f CRing r Base f x Base w y Base w [˙ w / s]˙ [˙ w / t]˙ r s x t y = r s x t y x t r s y = r s x t y