Description: Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by SN, 2-Mar-2025)
Ref | Expression | ||
---|---|---|---|
Assertion | df-assa | |
Step | Hyp | Ref | Expression |
---|---|---|---|
0 | casa | |
|
1 | vw | |
|
2 | clmod | |
|
3 | crg | |
|
4 | 2 3 | cin | |
5 | csca | |
|
6 | 1 | cv | |
7 | 6 5 | cfv | |
8 | vf | |
|
9 | vr | |
|
10 | cbs | |
|
11 | 8 | cv | |
12 | 11 10 | cfv | |
13 | vx | |
|
14 | 6 10 | cfv | |
15 | vy | |
|
16 | cvsca | |
|
17 | 6 16 | cfv | |
18 | vs | |
|
19 | cmulr | |
|
20 | 6 19 | cfv | |
21 | vt | |
|
22 | 9 | cv | |
23 | 18 | cv | |
24 | 13 | cv | |
25 | 22 24 23 | co | |
26 | 21 | cv | |
27 | 15 | cv | |
28 | 25 27 26 | co | |
29 | 24 27 26 | co | |
30 | 22 29 23 | co | |
31 | 28 30 | wceq | |
32 | 22 27 23 | co | |
33 | 24 32 26 | co | |
34 | 33 30 | wceq | |
35 | 31 34 | wa | |
36 | 35 21 20 | wsbc | |
37 | 36 18 17 | wsbc | |
38 | 37 15 14 | wral | |
39 | 38 13 14 | wral | |
40 | 39 9 12 | wral | |
41 | 40 8 7 | wsbc | |
42 | 41 1 4 | crab | |
43 | 0 42 | wceq | |