Metamath Proof Explorer


Definition df-assa

Description: Definition of an associative algebra. An associative algebra is a set equipped with a left-module structure on a ring, coupled with a multiplicative internal operation on the vectors of the module that is associative and distributive for the additive structure of the left-module (so giving the vectors a ring structure) and that is also bilinear under the scalar product. (Contributed by Mario Carneiro, 29-Dec-2014) (Revised by SN, 2-Mar-2025)

Ref Expression
Assertion df-assa AssAlg=wLModRing|[˙Scalarw/f]˙rBasefxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty

Detailed syntax breakdown

Step Hyp Ref Expression
0 casa classAssAlg
1 vw setvarw
2 clmod classLMod
3 crg classRing
4 2 3 cin classLModRing
5 csca classScalar
6 1 cv setvarw
7 6 5 cfv classScalarw
8 vf setvarf
9 vr setvarr
10 cbs classBase
11 8 cv setvarf
12 11 10 cfv classBasef
13 vx setvarx
14 6 10 cfv classBasew
15 vy setvary
16 cvsca class𝑠
17 6 16 cfv classw
18 vs setvars
19 cmulr class𝑟
20 6 19 cfv classw
21 vt setvart
22 9 cv setvarr
23 18 cv setvars
24 13 cv setvarx
25 22 24 23 co classrsx
26 21 cv setvart
27 15 cv setvary
28 25 27 26 co classrsxty
29 24 27 26 co classxty
30 22 29 23 co classrsxty
31 28 30 wceq wffrsxty=rsxty
32 22 27 23 co classrsy
33 24 32 26 co classxtrsy
34 33 30 wceq wffxtrsy=rsxty
35 31 34 wa wffrsxty=rsxtyxtrsy=rsxty
36 35 21 20 wsbc wff[˙w/t]˙rsxty=rsxtyxtrsy=rsxty
37 36 18 17 wsbc wff[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty
38 37 15 14 wral wffyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty
39 38 13 14 wral wffxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty
40 39 9 12 wral wffrBasefxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty
41 40 8 7 wsbc wff[˙Scalarw/f]˙rBasefxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty
42 41 1 4 crab classwLModRing|[˙Scalarw/f]˙rBasefxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty
43 0 42 wceq wffAssAlg=wLModRing|[˙Scalarw/f]˙rBasefxBasewyBasew[˙w/s]˙[˙w/t]˙rsxty=rsxtyxtrsy=rsxty