| Step |
Hyp |
Ref |
Expression |
| 1 |
|
matinv.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
matinv.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑅 ) |
| 3 |
|
matinv.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
| 4 |
|
matinv.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 5 |
|
matinv.u |
⊢ 𝑈 = ( Unit ‘ 𝐴 ) |
| 6 |
|
matinv.v |
⊢ 𝑉 = ( Unit ‘ 𝑅 ) |
| 7 |
|
matinv.h |
⊢ 𝐻 = ( invr ‘ 𝑅 ) |
| 8 |
|
matinv.i |
⊢ 𝐼 = ( invr ‘ 𝐴 ) |
| 9 |
|
matinv.t |
⊢ ∙ = ( ·𝑠 ‘ 𝐴 ) |
| 10 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 11 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
| 12 |
1 4
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 13 |
12
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 14 |
13
|
3ad2ant2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
| 15 |
|
simp1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑅 ∈ CRing ) |
| 16 |
1
|
matassa |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ AssAlg ) |
| 17 |
14 15 16
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝐴 ∈ AssAlg ) |
| 18 |
|
assaring |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ Ring ) |
| 19 |
17 18
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝐴 ∈ Ring ) |
| 20 |
|
simp2 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑀 ∈ 𝐵 ) |
| 21 |
|
assalmod |
⊢ ( 𝐴 ∈ AssAlg → 𝐴 ∈ LMod ) |
| 22 |
17 21
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝐴 ∈ LMod ) |
| 23 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 24 |
23
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑅 ∈ Ring ) |
| 25 |
|
simp3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) |
| 26 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 27 |
6 7 26
|
ringinvcl |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 28 |
24 25 27
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ 𝑅 ) ) |
| 29 |
1
|
matsca2 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
| 30 |
14 15 29
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝑅 = ( Scalar ‘ 𝐴 ) ) |
| 31 |
30
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( Base ‘ 𝑅 ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 32 |
28 31
|
eleqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 33 |
1 2 4
|
maduf |
⊢ ( 𝑅 ∈ CRing → 𝐽 : 𝐵 ⟶ 𝐵 ) |
| 34 |
33
|
3ad2ant1 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → 𝐽 : 𝐵 ⟶ 𝐵 ) |
| 35 |
34 20
|
ffvelcdmd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) |
| 36 |
|
eqid |
⊢ ( Scalar ‘ 𝐴 ) = ( Scalar ‘ 𝐴 ) |
| 37 |
|
eqid |
⊢ ( Base ‘ ( Scalar ‘ 𝐴 ) ) = ( Base ‘ ( Scalar ‘ 𝐴 ) ) |
| 38 |
4 36 9 37
|
lmodvscl |
⊢ ( ( 𝐴 ∈ LMod ∧ ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ∈ 𝐵 ) |
| 39 |
22 32 35 38
|
syl3anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ∈ 𝐵 ) |
| 40 |
4 36 37 9 10
|
assaassr |
⊢ ( ( 𝐴 ∈ AssAlg ∧ ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) ) → ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) ) ) |
| 41 |
17 32 20 35 40
|
syl13anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) ) ) |
| 42 |
1 4 2 3 11 10 9
|
madurid |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) = ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) |
| 43 |
20 15 42
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) = ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) |
| 44 |
43
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝑀 ( .r ‘ 𝐴 ) ( 𝐽 ‘ 𝑀 ) ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) ) |
| 45 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 46 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 47 |
6 7 45 46
|
unitlinv |
⊢ ( ( 𝑅 ∈ Ring ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) |
| 48 |
24 25 47
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) = ( 1r ‘ 𝑅 ) ) |
| 49 |
30
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( .r ‘ 𝑅 ) = ( .r ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 50 |
49
|
oveqd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ 𝑅 ) ( 𝐷 ‘ 𝑀 ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ) |
| 51 |
30
|
fveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 52 |
48 50 51
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 53 |
52
|
oveq1d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∙ ( 1r ‘ 𝐴 ) ) ) |
| 54 |
26 6
|
unitcl |
⊢ ( ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 → ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
| 55 |
54
|
3ad2ant3 |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
| 56 |
55 31
|
eleqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ) |
| 57 |
4 11
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
| 58 |
19 57
|
syl |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 1r ‘ 𝐴 ) ∈ 𝐵 ) |
| 59 |
|
eqid |
⊢ ( .r ‘ ( Scalar ‘ 𝐴 ) ) = ( .r ‘ ( Scalar ‘ 𝐴 ) ) |
| 60 |
4 36 9 37 59
|
lmodvsass |
⊢ ( ( 𝐴 ∈ LMod ∧ ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐷 ‘ 𝑀 ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 1r ‘ 𝐴 ) ∈ 𝐵 ) ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) ) |
| 61 |
22 32 56 58 60
|
syl13anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ( .r ‘ ( Scalar ‘ 𝐴 ) ) ( 𝐷 ‘ 𝑀 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) ) |
| 62 |
|
eqid |
⊢ ( 1r ‘ ( Scalar ‘ 𝐴 ) ) = ( 1r ‘ ( Scalar ‘ 𝐴 ) ) |
| 63 |
4 36 9 62
|
lmodvs1 |
⊢ ( ( 𝐴 ∈ LMod ∧ ( 1r ‘ 𝐴 ) ∈ 𝐵 ) → ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝐴 ) ) |
| 64 |
22 58 63
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 1r ‘ ( Scalar ‘ 𝐴 ) ) ∙ ( 1r ‘ 𝐴 ) ) = ( 1r ‘ 𝐴 ) ) |
| 65 |
53 61 64
|
3eqtr3d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) = ( 1r ‘ 𝐴 ) ) |
| 66 |
41 44 65
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ( .r ‘ 𝐴 ) ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ) = ( 1r ‘ 𝐴 ) ) |
| 67 |
4 36 37 9 10
|
assaass |
⊢ ( ( 𝐴 ∈ AssAlg ∧ ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∈ ( Base ‘ ( Scalar ‘ 𝐴 ) ) ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵 ) ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) ) |
| 68 |
17 32 35 20 67
|
syl13anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) ) |
| 69 |
1 4 2 3 11 10 9
|
madulid |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) |
| 70 |
20 15 69
|
syl2anc |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) |
| 71 |
70
|
oveq2d |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐽 ‘ 𝑀 ) ( .r ‘ 𝐴 ) 𝑀 ) ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( ( 𝐷 ‘ 𝑀 ) ∙ ( 1r ‘ 𝐴 ) ) ) ) |
| 72 |
68 71 65
|
3eqtrd |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ( .r ‘ 𝐴 ) 𝑀 ) = ( 1r ‘ 𝐴 ) ) |
| 73 |
4 10 11 5 8 19 20 39 66 72
|
invrvald |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ∧ ( 𝐷 ‘ 𝑀 ) ∈ 𝑉 ) → ( 𝑀 ∈ 𝑈 ∧ ( 𝐼 ‘ 𝑀 ) = ( ( 𝐻 ‘ ( 𝐷 ‘ 𝑀 ) ) ∙ ( 𝐽 ‘ 𝑀 ) ) ) ) |