| Step |
Hyp |
Ref |
Expression |
| 1 |
|
madurid.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
madurid.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
madurid.j |
⊢ 𝐽 = ( 𝑁 maAdju 𝑅 ) |
| 4 |
|
madurid.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
| 5 |
|
madurid.i |
⊢ 1 = ( 1r ‘ 𝐴 ) |
| 6 |
|
madurid.t |
⊢ · = ( .r ‘ 𝐴 ) |
| 7 |
|
madurid.s |
⊢ ∙ = ( ·𝑠 ‘ 𝐴 ) |
| 8 |
|
simpr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
| 9 |
1 3 2
|
maduf |
⊢ ( 𝑅 ∈ CRing → 𝐽 : 𝐵 ⟶ 𝐵 ) |
| 10 |
9
|
ffvelcdmda |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) |
| 11 |
10
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ) |
| 12 |
|
simpl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 𝑀 ∈ 𝐵 ) |
| 13 |
1 2 6
|
mattposm |
⊢ ( ( 𝑅 ∈ CRing ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵 ) → tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( tpos 𝑀 · tpos ( 𝐽 ‘ 𝑀 ) ) ) |
| 14 |
8 11 12 13
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( tpos 𝑀 · tpos ( 𝐽 ‘ 𝑀 ) ) ) |
| 15 |
1 3 2
|
madutpos |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐽 ‘ tpos 𝑀 ) = tpos ( 𝐽 ‘ 𝑀 ) ) |
| 16 |
15
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝐽 ‘ tpos 𝑀 ) = tpos ( 𝐽 ‘ 𝑀 ) ) |
| 17 |
16
|
oveq2d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( tpos 𝑀 · ( 𝐽 ‘ tpos 𝑀 ) ) = ( tpos 𝑀 · tpos ( 𝐽 ‘ 𝑀 ) ) ) |
| 18 |
1 2
|
mattposcl |
⊢ ( 𝑀 ∈ 𝐵 → tpos 𝑀 ∈ 𝐵 ) |
| 19 |
1 2 3 4 5 6 7
|
madurid |
⊢ ( ( tpos 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( tpos 𝑀 · ( 𝐽 ‘ tpos 𝑀 ) ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) ) |
| 20 |
18 19
|
sylan |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( tpos 𝑀 · ( 𝐽 ‘ tpos 𝑀 ) ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) ) |
| 21 |
14 17 20
|
3eqtr2d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) ) |
| 22 |
21
|
tposeqd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = tpos ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) ) |
| 23 |
1 2
|
matrcl |
⊢ ( 𝑀 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 24 |
23
|
simpld |
⊢ ( 𝑀 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 25 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 26 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 27 |
24 25 26
|
syl2an |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 𝐴 ∈ Ring ) |
| 28 |
2 6
|
ringcl |
⊢ ( ( 𝐴 ∈ Ring ∧ ( 𝐽 ‘ 𝑀 ) ∈ 𝐵 ∧ 𝑀 ∈ 𝐵 ) → ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ∈ 𝐵 ) |
| 29 |
27 11 12 28
|
syl3anc |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ∈ 𝐵 ) |
| 30 |
1 2
|
mattpostpos |
⊢ ( ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ∈ 𝐵 → tpos tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ) |
| 31 |
29 30
|
syl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos tpos ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) ) |
| 32 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 33 |
4 1 2 32
|
mdetf |
⊢ ( 𝑅 ∈ CRing → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 34 |
33
|
adantl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 𝐷 : 𝐵 ⟶ ( Base ‘ 𝑅 ) ) |
| 35 |
18
|
adantr |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos 𝑀 ∈ 𝐵 ) |
| 36 |
34 35
|
ffvelcdmd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝐷 ‘ tpos 𝑀 ) ∈ ( Base ‘ 𝑅 ) ) |
| 37 |
2 5
|
ringidcl |
⊢ ( 𝐴 ∈ Ring → 1 ∈ 𝐵 ) |
| 38 |
27 37
|
syl |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → 1 ∈ 𝐵 ) |
| 39 |
1 2 32 7
|
mattposvs |
⊢ ( ( ( 𝐷 ‘ tpos 𝑀 ) ∈ ( Base ‘ 𝑅 ) ∧ 1 ∈ 𝐵 ) → tpos ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ tpos 1 ) ) |
| 40 |
36 38 39
|
syl2anc |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) = ( ( 𝐷 ‘ tpos 𝑀 ) ∙ tpos 1 ) ) |
| 41 |
4 1 2
|
mdettpos |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑀 ∈ 𝐵 ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝐷 ‘ 𝑀 ) ) |
| 42 |
41
|
ancoms |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( 𝐷 ‘ tpos 𝑀 ) = ( 𝐷 ‘ 𝑀 ) ) |
| 43 |
1 5
|
mattpos1 |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → tpos 1 = 1 ) |
| 44 |
24 25 43
|
syl2an |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos 1 = 1 ) |
| 45 |
42 44
|
oveq12d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( ( 𝐷 ‘ tpos 𝑀 ) ∙ tpos 1 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ 1 ) ) |
| 46 |
40 45
|
eqtrd |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → tpos ( ( 𝐷 ‘ tpos 𝑀 ) ∙ 1 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ 1 ) ) |
| 47 |
22 31 46
|
3eqtr3d |
⊢ ( ( 𝑀 ∈ 𝐵 ∧ 𝑅 ∈ CRing ) → ( ( 𝐽 ‘ 𝑀 ) · 𝑀 ) = ( ( 𝐷 ‘ 𝑀 ) ∙ 1 ) ) |