Step |
Hyp |
Ref |
Expression |
1 |
|
mattposvs.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
2 |
|
mattposvs.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
3 |
|
mattposvs.k |
⊢ 𝐾 = ( Base ‘ 𝑅 ) |
4 |
|
mattposvs.v |
⊢ · = ( ·𝑠 ‘ 𝐴 ) |
5 |
1 2
|
matrcl |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
6 |
5
|
simpld |
⊢ ( 𝑌 ∈ 𝐵 → 𝑁 ∈ Fin ) |
7 |
|
sqxpexg |
⊢ ( 𝑁 ∈ Fin → ( 𝑁 × 𝑁 ) ∈ V ) |
8 |
6 7
|
syl |
⊢ ( 𝑌 ∈ 𝐵 → ( 𝑁 × 𝑁 ) ∈ V ) |
9 |
|
snex |
⊢ { 𝑋 } ∈ V |
10 |
|
xpexg |
⊢ ( ( ( 𝑁 × 𝑁 ) ∈ V ∧ { 𝑋 } ∈ V ) → ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∈ V ) |
11 |
8 9 10
|
sylancl |
⊢ ( 𝑌 ∈ 𝐵 → ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∈ V ) |
12 |
|
oftpos |
⊢ ( ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∈ V ∧ 𝑌 ∈ 𝐵 ) → tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( tpos ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
13 |
11 12
|
mpancom |
⊢ ( 𝑌 ∈ 𝐵 → tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( tpos ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
14 |
|
tposconst |
⊢ tpos ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) = ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) |
15 |
14
|
oveq1i |
⊢ ( tpos ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) |
16 |
13 15
|
eqtrdi |
⊢ ( 𝑌 ∈ 𝐵 → tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
17 |
16
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
18 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
19 |
|
eqid |
⊢ ( 𝑁 × 𝑁 ) = ( 𝑁 × 𝑁 ) |
20 |
1 2 3 4 18 19
|
matvsca2 |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) ) |
21 |
20
|
tposeqd |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 · 𝑌 ) = tpos ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) 𝑌 ) ) |
22 |
1 2
|
mattposcl |
⊢ ( 𝑌 ∈ 𝐵 → tpos 𝑌 ∈ 𝐵 ) |
23 |
1 2 3 4 18 19
|
matvsca2 |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ tpos 𝑌 ∈ 𝐵 ) → ( 𝑋 · tpos 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
24 |
22 23
|
sylan2 |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → ( 𝑋 · tpos 𝑌 ) = ( ( ( 𝑁 × 𝑁 ) × { 𝑋 } ) ∘f ( .r ‘ 𝑅 ) tpos 𝑌 ) ) |
25 |
17 21 24
|
3eqtr4d |
⊢ ( ( 𝑋 ∈ 𝐾 ∧ 𝑌 ∈ 𝐵 ) → tpos ( 𝑋 · 𝑌 ) = ( 𝑋 · tpos 𝑌 ) ) |