Metamath Proof Explorer


Theorem mattposvs

Description: The transposition of a matrix multiplied with a scalar equals the transposed matrix multiplied with the scalar, see also the statement in Lang p. 505. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses mattposvs.a A = N Mat R
mattposvs.b B = Base A
mattposvs.k K = Base R
mattposvs.v · ˙ = A
Assertion mattposvs X K Y B tpos X · ˙ Y = X · ˙ tpos Y

Proof

Step Hyp Ref Expression
1 mattposvs.a A = N Mat R
2 mattposvs.b B = Base A
3 mattposvs.k K = Base R
4 mattposvs.v · ˙ = A
5 1 2 matrcl Y B N Fin R V
6 5 simpld Y B N Fin
7 sqxpexg N Fin N × N V
8 6 7 syl Y B N × N V
9 snex X V
10 xpexg N × N V X V N × N × X V
11 8 9 10 sylancl Y B N × N × X V
12 oftpos N × N × X V Y B tpos N × N × X R f Y = tpos N × N × X R f tpos Y
13 11 12 mpancom Y B tpos N × N × X R f Y = tpos N × N × X R f tpos Y
14 tposconst tpos N × N × X = N × N × X
15 14 oveq1i tpos N × N × X R f tpos Y = N × N × X R f tpos Y
16 13 15 eqtrdi Y B tpos N × N × X R f Y = N × N × X R f tpos Y
17 16 adantl X K Y B tpos N × N × X R f Y = N × N × X R f tpos Y
18 eqid R = R
19 eqid N × N = N × N
20 1 2 3 4 18 19 matvsca2 X K Y B X · ˙ Y = N × N × X R f Y
21 20 tposeqd X K Y B tpos X · ˙ Y = tpos N × N × X R f Y
22 1 2 mattposcl Y B tpos Y B
23 1 2 3 4 18 19 matvsca2 X K tpos Y B X · ˙ tpos Y = N × N × X R f tpos Y
24 22 23 sylan2 X K Y B X · ˙ tpos Y = N × N × X R f tpos Y
25 17 21 24 3eqtr4d X K Y B tpos X · ˙ Y = X · ˙ tpos Y