Metamath Proof Explorer


Theorem madulid

Description: Multiplying the adjunct of a matrix with the matrix results in the identity matrix multiplied with the determinant of the matrix. See Proposition 4.16 in Lang p. 518. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses madurid.a A = N Mat R
madurid.b B = Base A
madurid.j J = N maAdju R
madurid.d D = N maDet R
madurid.i 1 ˙ = 1 A
madurid.t · ˙ = A
madurid.s ˙ = A
Assertion madulid M B R CRing J M · ˙ M = D M ˙ 1 ˙

Proof

Step Hyp Ref Expression
1 madurid.a A = N Mat R
2 madurid.b B = Base A
3 madurid.j J = N maAdju R
4 madurid.d D = N maDet R
5 madurid.i 1 ˙ = 1 A
6 madurid.t · ˙ = A
7 madurid.s ˙ = A
8 simpr M B R CRing R CRing
9 1 3 2 maduf R CRing J : B B
10 9 ffvelrnda R CRing M B J M B
11 10 ancoms M B R CRing J M B
12 simpl M B R CRing M B
13 1 2 6 mattposm R CRing J M B M B tpos J M · ˙ M = tpos M · ˙ tpos J M
14 8 11 12 13 syl3anc M B R CRing tpos J M · ˙ M = tpos M · ˙ tpos J M
15 1 3 2 madutpos R CRing M B J tpos M = tpos J M
16 15 ancoms M B R CRing J tpos M = tpos J M
17 16 oveq2d M B R CRing tpos M · ˙ J tpos M = tpos M · ˙ tpos J M
18 1 2 mattposcl M B tpos M B
19 1 2 3 4 5 6 7 madurid tpos M B R CRing tpos M · ˙ J tpos M = D tpos M ˙ 1 ˙
20 18 19 sylan M B R CRing tpos M · ˙ J tpos M = D tpos M ˙ 1 ˙
21 14 17 20 3eqtr2d M B R CRing tpos J M · ˙ M = D tpos M ˙ 1 ˙
22 21 tposeqd M B R CRing tpos tpos J M · ˙ M = tpos D tpos M ˙ 1 ˙
23 1 2 matrcl M B N Fin R V
24 23 simpld M B N Fin
25 crngring R CRing R Ring
26 1 matring N Fin R Ring A Ring
27 24 25 26 syl2an M B R CRing A Ring
28 2 6 ringcl A Ring J M B M B J M · ˙ M B
29 27 11 12 28 syl3anc M B R CRing J M · ˙ M B
30 1 2 mattpostpos J M · ˙ M B tpos tpos J M · ˙ M = J M · ˙ M
31 29 30 syl M B R CRing tpos tpos J M · ˙ M = J M · ˙ M
32 eqid Base R = Base R
33 4 1 2 32 mdetf R CRing D : B Base R
34 33 adantl M B R CRing D : B Base R
35 18 adantr M B R CRing tpos M B
36 34 35 ffvelrnd M B R CRing D tpos M Base R
37 2 5 ringidcl A Ring 1 ˙ B
38 27 37 syl M B R CRing 1 ˙ B
39 1 2 32 7 mattposvs D tpos M Base R 1 ˙ B tpos D tpos M ˙ 1 ˙ = D tpos M ˙ tpos 1 ˙
40 36 38 39 syl2anc M B R CRing tpos D tpos M ˙ 1 ˙ = D tpos M ˙ tpos 1 ˙
41 4 1 2 mdettpos R CRing M B D tpos M = D M
42 41 ancoms M B R CRing D tpos M = D M
43 1 5 mattpos1 N Fin R Ring tpos 1 ˙ = 1 ˙
44 24 25 43 syl2an M B R CRing tpos 1 ˙ = 1 ˙
45 42 44 oveq12d M B R CRing D tpos M ˙ tpos 1 ˙ = D M ˙ 1 ˙
46 40 45 eqtrd M B R CRing tpos D tpos M ˙ 1 ˙ = D M ˙ 1 ˙
47 22 31 46 3eqtr3d M B R CRing J M · ˙ M = D M ˙ 1 ˙