Metamath Proof Explorer


Theorem mattpostpos

Description: The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018)

Ref Expression
Hypotheses mattposcl.a A=NMatR
mattposcl.b B=BaseA
Assertion mattpostpos MBtpostposM=M

Proof

Step Hyp Ref Expression
1 mattposcl.a A=NMatR
2 mattposcl.b B=BaseA
3 eqid BaseR=BaseR
4 1 3 2 matbas2i MBMBaseRN×N
5 elmapi MBaseRN×NM:N×NBaseR
6 4 5 syl MBM:N×NBaseR
7 frel M:N×NBaseRRelM
8 6 7 syl MBRelM
9 relxp RelN×N
10 6 fdmd MBdomM=N×N
11 10 releqd MBReldomMRelN×N
12 9 11 mpbiri MBReldomM
13 tpostpos2 RelMReldomMtpostposM=M
14 8 12 13 syl2anc MBtpostposM=M