Metamath Proof Explorer


Theorem mattpostpos

Description: The transpose of the transpose of a square matrix is the square matrix itself. (Contributed by SO, 17-Jul-2018)

Ref Expression
Hypotheses mattposcl.a
|- A = ( N Mat R )
mattposcl.b
|- B = ( Base ` A )
Assertion mattpostpos
|- ( M e. B -> tpos tpos M = M )

Proof

Step Hyp Ref Expression
1 mattposcl.a
 |-  A = ( N Mat R )
2 mattposcl.b
 |-  B = ( Base ` A )
3 eqid
 |-  ( Base ` R ) = ( Base ` R )
4 1 3 2 matbas2i
 |-  ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) )
5 elmapi
 |-  ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) )
6 4 5 syl
 |-  ( M e. B -> M : ( N X. N ) --> ( Base ` R ) )
7 frel
 |-  ( M : ( N X. N ) --> ( Base ` R ) -> Rel M )
8 6 7 syl
 |-  ( M e. B -> Rel M )
9 relxp
 |-  Rel ( N X. N )
10 6 fdmd
 |-  ( M e. B -> dom M = ( N X. N ) )
11 10 releqd
 |-  ( M e. B -> ( Rel dom M <-> Rel ( N X. N ) ) )
12 9 11 mpbiri
 |-  ( M e. B -> Rel dom M )
13 tpostpos2
 |-  ( ( Rel M /\ Rel dom M ) -> tpos tpos M = M )
14 8 12 13 syl2anc
 |-  ( M e. B -> tpos tpos M = M )