| Step |
Hyp |
Ref |
Expression |
| 1 |
|
mattposcl.a |
|- A = ( N Mat R ) |
| 2 |
|
mattposcl.b |
|- B = ( Base ` A ) |
| 3 |
|
eqid |
|- ( Base ` R ) = ( Base ` R ) |
| 4 |
1 3 2
|
matbas2i |
|- ( M e. B -> M e. ( ( Base ` R ) ^m ( N X. N ) ) ) |
| 5 |
|
elmapi |
|- ( M e. ( ( Base ` R ) ^m ( N X. N ) ) -> M : ( N X. N ) --> ( Base ` R ) ) |
| 6 |
4 5
|
syl |
|- ( M e. B -> M : ( N X. N ) --> ( Base ` R ) ) |
| 7 |
|
frel |
|- ( M : ( N X. N ) --> ( Base ` R ) -> Rel M ) |
| 8 |
6 7
|
syl |
|- ( M e. B -> Rel M ) |
| 9 |
|
relxp |
|- Rel ( N X. N ) |
| 10 |
6
|
fdmd |
|- ( M e. B -> dom M = ( N X. N ) ) |
| 11 |
10
|
releqd |
|- ( M e. B -> ( Rel dom M <-> Rel ( N X. N ) ) ) |
| 12 |
9 11
|
mpbiri |
|- ( M e. B -> Rel dom M ) |
| 13 |
|
tpostpos2 |
|- ( ( Rel M /\ Rel dom M ) -> tpos tpos M = M ) |
| 14 |
8 12 13
|
syl2anc |
|- ( M e. B -> tpos tpos M = M ) |