Metamath Proof Explorer


Theorem assaass

Description: Left-associative property of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses isassa.v V=BaseW
isassa.f F=ScalarW
isassa.b B=BaseF
isassa.s ·˙=W
isassa.t ×˙=W
Assertion assaass WAssAlgABXVYVA·˙X×˙Y=A·˙X×˙Y

Proof

Step Hyp Ref Expression
1 isassa.v V=BaseW
2 isassa.f F=ScalarW
3 isassa.b B=BaseF
4 isassa.s ·˙=W
5 isassa.t ×˙=W
6 1 2 3 4 5 assalem WAssAlgABXVYVA·˙X×˙Y=A·˙X×˙YX×˙A·˙Y=A·˙X×˙Y
7 6 simpld WAssAlgABXVYVA·˙X×˙Y=A·˙X×˙Y