Metamath Proof Explorer


Theorem assalem

Description: The properties of an associative algebra. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Hypotheses isassa.v V=BaseW
isassa.f F=ScalarW
isassa.b B=BaseF
isassa.s ·˙=W
isassa.t ×˙=W
Assertion assalem WAssAlgABXVYVA·˙X×˙Y=A·˙X×˙YX×˙A·˙Y=A·˙X×˙Y

Proof

Step Hyp Ref Expression
1 isassa.v V=BaseW
2 isassa.f F=ScalarW
3 isassa.b B=BaseF
4 isassa.s ·˙=W
5 isassa.t ×˙=W
6 1 2 3 4 5 isassa WAssAlgWLModWRingrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
7 6 simprbi WAssAlgrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙y
8 oveq1 r=Ar·˙x=A·˙x
9 8 oveq1d r=Ar·˙x×˙y=A·˙x×˙y
10 oveq1 r=Ar·˙x×˙y=A·˙x×˙y
11 9 10 eqeq12d r=Ar·˙x×˙y=r·˙x×˙yA·˙x×˙y=A·˙x×˙y
12 oveq1 r=Ar·˙y=A·˙y
13 12 oveq2d r=Ax×˙r·˙y=x×˙A·˙y
14 13 10 eqeq12d r=Ax×˙r·˙y=r·˙x×˙yx×˙A·˙y=A·˙x×˙y
15 11 14 anbi12d r=Ar·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙yA·˙x×˙y=A·˙x×˙yx×˙A·˙y=A·˙x×˙y
16 oveq2 x=XA·˙x=A·˙X
17 16 oveq1d x=XA·˙x×˙y=A·˙X×˙y
18 oveq1 x=Xx×˙y=X×˙y
19 18 oveq2d x=XA·˙x×˙y=A·˙X×˙y
20 17 19 eqeq12d x=XA·˙x×˙y=A·˙x×˙yA·˙X×˙y=A·˙X×˙y
21 oveq1 x=Xx×˙A·˙y=X×˙A·˙y
22 21 19 eqeq12d x=Xx×˙A·˙y=A·˙x×˙yX×˙A·˙y=A·˙X×˙y
23 20 22 anbi12d x=XA·˙x×˙y=A·˙x×˙yx×˙A·˙y=A·˙x×˙yA·˙X×˙y=A·˙X×˙yX×˙A·˙y=A·˙X×˙y
24 oveq2 y=YA·˙X×˙y=A·˙X×˙Y
25 oveq2 y=YX×˙y=X×˙Y
26 25 oveq2d y=YA·˙X×˙y=A·˙X×˙Y
27 24 26 eqeq12d y=YA·˙X×˙y=A·˙X×˙yA·˙X×˙Y=A·˙X×˙Y
28 oveq2 y=YA·˙y=A·˙Y
29 28 oveq2d y=YX×˙A·˙y=X×˙A·˙Y
30 29 26 eqeq12d y=YX×˙A·˙y=A·˙X×˙yX×˙A·˙Y=A·˙X×˙Y
31 27 30 anbi12d y=YA·˙X×˙y=A·˙X×˙yX×˙A·˙y=A·˙X×˙yA·˙X×˙Y=A·˙X×˙YX×˙A·˙Y=A·˙X×˙Y
32 15 23 31 rspc3v ABXVYVrBxVyVr·˙x×˙y=r·˙x×˙yx×˙r·˙y=r·˙x×˙yA·˙X×˙Y=A·˙X×˙YX×˙A·˙Y=A·˙X×˙Y
33 7 32 mpan9 WAssAlgABXVYVA·˙X×˙Y=A·˙X×˙YX×˙A·˙Y=A·˙X×˙Y