Description: If a matrix multiplied with a given matrix (from the left as well as from the right) results in the identity matrix, this matrix is the inverse (matrix) of the given matrix. (Contributed by Stefan O'Rear, 17-Jul-2018)
Ref | Expression | ||
---|---|---|---|
Hypotheses | invrvald.b | |
|
invrvald.t | |
||
invrvald.o | |
||
invrvald.u | |
||
invrvald.i | |
||
invrvald.r | |
||
invrvald.x | |
||
invrvald.y | |
||
invrvald.xy | |
||
invrvald.yx | |
||
Assertion | invrvald | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | invrvald.b | |
|
2 | invrvald.t | |
|
3 | invrvald.o | |
|
4 | invrvald.u | |
|
5 | invrvald.i | |
|
6 | invrvald.r | |
|
7 | invrvald.x | |
|
8 | invrvald.y | |
|
9 | invrvald.xy | |
|
10 | invrvald.yx | |
|
11 | eqid | |
|
12 | 1 11 2 | dvdsrmul | |
13 | 7 8 12 | syl2anc | |
14 | 13 10 | breqtrd | |
15 | eqid | |
|
16 | 15 1 | opprbas | |
17 | eqid | |
|
18 | eqid | |
|
19 | 16 17 18 | dvdsrmul | |
20 | 7 8 19 | syl2anc | |
21 | 1 2 15 18 | opprmul | |
22 | 21 9 | eqtrid | |
23 | 20 22 | breqtrd | |
24 | 4 3 11 15 17 | isunit | |
25 | 14 23 24 | sylanbrc | |
26 | eqid | |
|
27 | 4 26 3 | unitgrpid | |
28 | 6 27 | syl | |
29 | 9 28 | eqtrd | |
30 | 4 26 | unitgrp | |
31 | 6 30 | syl | |
32 | 1 11 2 | dvdsrmul | |
33 | 8 7 32 | syl2anc | |
34 | 33 9 | breqtrd | |
35 | 16 17 18 | dvdsrmul | |
36 | 8 7 35 | syl2anc | |
37 | 1 2 15 18 | opprmul | |
38 | 37 10 | eqtrid | |
39 | 36 38 | breqtrd | |
40 | 4 3 11 15 17 | isunit | |
41 | 34 39 40 | sylanbrc | |
42 | 4 26 | unitgrpbas | |
43 | 4 | fvexi | |
44 | eqid | |
|
45 | 44 2 | mgpplusg | |
46 | 26 45 | ressplusg | |
47 | 43 46 | ax-mp | |
48 | eqid | |
|
49 | 4 26 5 | invrfval | |
50 | 42 47 48 49 | grpinvid1 | |
51 | 31 25 41 50 | syl3anc | |
52 | 29 51 | mpbird | |
53 | 25 52 | jca | |