Metamath Proof Explorer


Theorem invrvald

Description: If a matrix multiplied with a given matrix (from the left as well as from the right) results in the identity matrix, this matrix is the inverse (matrix) of the given matrix. (Contributed by Stefan O'Rear, 17-Jul-2018)

Ref Expression
Hypotheses invrvald.b B=BaseR
invrvald.t ·˙=R
invrvald.o 1˙=1R
invrvald.u U=UnitR
invrvald.i I=invrR
invrvald.r φRRing
invrvald.x φXB
invrvald.y φYB
invrvald.xy φX·˙Y=1˙
invrvald.yx φY·˙X=1˙
Assertion invrvald φXUIX=Y

Proof

Step Hyp Ref Expression
1 invrvald.b B=BaseR
2 invrvald.t ·˙=R
3 invrvald.o 1˙=1R
4 invrvald.u U=UnitR
5 invrvald.i I=invrR
6 invrvald.r φRRing
7 invrvald.x φXB
8 invrvald.y φYB
9 invrvald.xy φX·˙Y=1˙
10 invrvald.yx φY·˙X=1˙
11 eqid rR=rR
12 1 11 2 dvdsrmul XBYBXrRY·˙X
13 7 8 12 syl2anc φXrRY·˙X
14 13 10 breqtrd φXrR1˙
15 eqid opprR=opprR
16 15 1 opprbas B=BaseopprR
17 eqid ropprR=ropprR
18 eqid opprR=opprR
19 16 17 18 dvdsrmul XBYBXropprRYopprRX
20 7 8 19 syl2anc φXropprRYopprRX
21 1 2 15 18 opprmul YopprRX=X·˙Y
22 21 9 eqtrid φYopprRX=1˙
23 20 22 breqtrd φXropprR1˙
24 4 3 11 15 17 isunit XUXrR1˙XropprR1˙
25 14 23 24 sylanbrc φXU
26 eqid mulGrpR𝑠U=mulGrpR𝑠U
27 4 26 3 unitgrpid RRing1˙=0mulGrpR𝑠U
28 6 27 syl φ1˙=0mulGrpR𝑠U
29 9 28 eqtrd φX·˙Y=0mulGrpR𝑠U
30 4 26 unitgrp RRingmulGrpR𝑠UGrp
31 6 30 syl φmulGrpR𝑠UGrp
32 1 11 2 dvdsrmul YBXBYrRX·˙Y
33 8 7 32 syl2anc φYrRX·˙Y
34 33 9 breqtrd φYrR1˙
35 16 17 18 dvdsrmul YBXBYropprRXopprRY
36 8 7 35 syl2anc φYropprRXopprRY
37 1 2 15 18 opprmul XopprRY=Y·˙X
38 37 10 eqtrid φXopprRY=1˙
39 36 38 breqtrd φYropprR1˙
40 4 3 11 15 17 isunit YUYrR1˙YropprR1˙
41 34 39 40 sylanbrc φYU
42 4 26 unitgrpbas U=BasemulGrpR𝑠U
43 4 fvexi UV
44 eqid mulGrpR=mulGrpR
45 44 2 mgpplusg ·˙=+mulGrpR
46 26 45 ressplusg UV·˙=+mulGrpR𝑠U
47 43 46 ax-mp ·˙=+mulGrpR𝑠U
48 eqid 0mulGrpR𝑠U=0mulGrpR𝑠U
49 4 26 5 invrfval I=invgmulGrpR𝑠U
50 42 47 48 49 grpinvid1 mulGrpR𝑠UGrpXUYUIX=YX·˙Y=0mulGrpR𝑠U
51 31 25 41 50 syl3anc φIX=YX·˙Y=0mulGrpR𝑠U
52 29 51 mpbird φIX=Y
53 25 52 jca φXUIX=Y