Step |
Hyp |
Ref |
Expression |
1 |
|
invrvald.b |
|- B = ( Base ` R ) |
2 |
|
invrvald.t |
|- .x. = ( .r ` R ) |
3 |
|
invrvald.o |
|- .1. = ( 1r ` R ) |
4 |
|
invrvald.u |
|- U = ( Unit ` R ) |
5 |
|
invrvald.i |
|- I = ( invr ` R ) |
6 |
|
invrvald.r |
|- ( ph -> R e. Ring ) |
7 |
|
invrvald.x |
|- ( ph -> X e. B ) |
8 |
|
invrvald.y |
|- ( ph -> Y e. B ) |
9 |
|
invrvald.xy |
|- ( ph -> ( X .x. Y ) = .1. ) |
10 |
|
invrvald.yx |
|- ( ph -> ( Y .x. X ) = .1. ) |
11 |
|
eqid |
|- ( ||r ` R ) = ( ||r ` R ) |
12 |
1 11 2
|
dvdsrmul |
|- ( ( X e. B /\ Y e. B ) -> X ( ||r ` R ) ( Y .x. X ) ) |
13 |
7 8 12
|
syl2anc |
|- ( ph -> X ( ||r ` R ) ( Y .x. X ) ) |
14 |
13 10
|
breqtrd |
|- ( ph -> X ( ||r ` R ) .1. ) |
15 |
|
eqid |
|- ( oppR ` R ) = ( oppR ` R ) |
16 |
15 1
|
opprbas |
|- B = ( Base ` ( oppR ` R ) ) |
17 |
|
eqid |
|- ( ||r ` ( oppR ` R ) ) = ( ||r ` ( oppR ` R ) ) |
18 |
|
eqid |
|- ( .r ` ( oppR ` R ) ) = ( .r ` ( oppR ` R ) ) |
19 |
16 17 18
|
dvdsrmul |
|- ( ( X e. B /\ Y e. B ) -> X ( ||r ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) |
20 |
7 8 19
|
syl2anc |
|- ( ph -> X ( ||r ` ( oppR ` R ) ) ( Y ( .r ` ( oppR ` R ) ) X ) ) |
21 |
1 2 15 18
|
opprmul |
|- ( Y ( .r ` ( oppR ` R ) ) X ) = ( X .x. Y ) |
22 |
21 9
|
eqtrid |
|- ( ph -> ( Y ( .r ` ( oppR ` R ) ) X ) = .1. ) |
23 |
20 22
|
breqtrd |
|- ( ph -> X ( ||r ` ( oppR ` R ) ) .1. ) |
24 |
4 3 11 15 17
|
isunit |
|- ( X e. U <-> ( X ( ||r ` R ) .1. /\ X ( ||r ` ( oppR ` R ) ) .1. ) ) |
25 |
14 23 24
|
sylanbrc |
|- ( ph -> X e. U ) |
26 |
|
eqid |
|- ( ( mulGrp ` R ) |`s U ) = ( ( mulGrp ` R ) |`s U ) |
27 |
4 26 3
|
unitgrpid |
|- ( R e. Ring -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
28 |
6 27
|
syl |
|- ( ph -> .1. = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
29 |
9 28
|
eqtrd |
|- ( ph -> ( X .x. Y ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) |
30 |
4 26
|
unitgrp |
|- ( R e. Ring -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
31 |
6 30
|
syl |
|- ( ph -> ( ( mulGrp ` R ) |`s U ) e. Grp ) |
32 |
1 11 2
|
dvdsrmul |
|- ( ( Y e. B /\ X e. B ) -> Y ( ||r ` R ) ( X .x. Y ) ) |
33 |
8 7 32
|
syl2anc |
|- ( ph -> Y ( ||r ` R ) ( X .x. Y ) ) |
34 |
33 9
|
breqtrd |
|- ( ph -> Y ( ||r ` R ) .1. ) |
35 |
16 17 18
|
dvdsrmul |
|- ( ( Y e. B /\ X e. B ) -> Y ( ||r ` ( oppR ` R ) ) ( X ( .r ` ( oppR ` R ) ) Y ) ) |
36 |
8 7 35
|
syl2anc |
|- ( ph -> Y ( ||r ` ( oppR ` R ) ) ( X ( .r ` ( oppR ` R ) ) Y ) ) |
37 |
1 2 15 18
|
opprmul |
|- ( X ( .r ` ( oppR ` R ) ) Y ) = ( Y .x. X ) |
38 |
37 10
|
eqtrid |
|- ( ph -> ( X ( .r ` ( oppR ` R ) ) Y ) = .1. ) |
39 |
36 38
|
breqtrd |
|- ( ph -> Y ( ||r ` ( oppR ` R ) ) .1. ) |
40 |
4 3 11 15 17
|
isunit |
|- ( Y e. U <-> ( Y ( ||r ` R ) .1. /\ Y ( ||r ` ( oppR ` R ) ) .1. ) ) |
41 |
34 39 40
|
sylanbrc |
|- ( ph -> Y e. U ) |
42 |
4 26
|
unitgrpbas |
|- U = ( Base ` ( ( mulGrp ` R ) |`s U ) ) |
43 |
4
|
fvexi |
|- U e. _V |
44 |
|
eqid |
|- ( mulGrp ` R ) = ( mulGrp ` R ) |
45 |
44 2
|
mgpplusg |
|- .x. = ( +g ` ( mulGrp ` R ) ) |
46 |
26 45
|
ressplusg |
|- ( U e. _V -> .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) ) |
47 |
43 46
|
ax-mp |
|- .x. = ( +g ` ( ( mulGrp ` R ) |`s U ) ) |
48 |
|
eqid |
|- ( 0g ` ( ( mulGrp ` R ) |`s U ) ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) |
49 |
4 26 5
|
invrfval |
|- I = ( invg ` ( ( mulGrp ` R ) |`s U ) ) |
50 |
42 47 48 49
|
grpinvid1 |
|- ( ( ( ( mulGrp ` R ) |`s U ) e. Grp /\ X e. U /\ Y e. U ) -> ( ( I ` X ) = Y <-> ( X .x. Y ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) ) |
51 |
31 25 41 50
|
syl3anc |
|- ( ph -> ( ( I ` X ) = Y <-> ( X .x. Y ) = ( 0g ` ( ( mulGrp ` R ) |`s U ) ) ) ) |
52 |
29 51
|
mpbird |
|- ( ph -> ( I ` X ) = Y ) |
53 |
25 52
|
jca |
|- ( ph -> ( X e. U /\ ( I ` X ) = Y ) ) |