| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slesolex.a |
|
| 2 |
|
slesolex.b |
|
| 3 |
|
slesolex.v |
|
| 4 |
|
slesolex.x |
|
| 5 |
|
slesolex.d |
|
| 6 |
|
slesolinv.i |
|
| 7 |
|
simpl1 |
|
| 8 |
|
simpl2 |
|
| 9 |
|
simp3 |
|
| 10 |
9
|
anim1i |
|
| 11 |
1 2 3 4 5 6
|
slesolinv |
|
| 12 |
7 8 10 11
|
syl3anc |
|
| 13 |
|
oveq2 |
|
| 14 |
|
simpr |
|
| 15 |
1 2
|
matrcl |
|
| 16 |
15
|
simpld |
|
| 17 |
16
|
adantr |
|
| 18 |
14 17
|
anim12ci |
|
| 19 |
18
|
3adant3 |
|
| 20 |
|
eqid |
|
| 21 |
1 20
|
matmulr |
|
| 22 |
19 21
|
syl |
|
| 23 |
22
|
oveqd |
|
| 24 |
|
crngring |
|
| 25 |
24
|
adantl |
|
| 26 |
25 17
|
anim12ci |
|
| 27 |
26
|
3adant3 |
|
| 28 |
1
|
matring |
|
| 29 |
27 28
|
syl |
|
| 30 |
|
eqid |
|
| 31 |
|
eqid |
|
| 32 |
1 5 2 30 31
|
matunit |
|
| 33 |
32
|
ad2ant2lr |
|
| 34 |
33
|
biimp3ar |
|
| 35 |
|
eqid |
|
| 36 |
|
eqid |
|
| 37 |
30 6 35 36
|
unitrinv |
|
| 38 |
29 34 37
|
syl2anc |
|
| 39 |
23 38
|
eqtrd |
|
| 40 |
39
|
oveq1d |
|
| 41 |
|
eqid |
|
| 42 |
25
|
3ad2ant1 |
|
| 43 |
17
|
3ad2ant2 |
|
| 44 |
3
|
eleq2i |
|
| 45 |
44
|
biimpi |
|
| 46 |
45
|
adantl |
|
| 47 |
46
|
3ad2ant2 |
|
| 48 |
2
|
eleq2i |
|
| 49 |
48
|
biimpi |
|
| 50 |
49
|
adantr |
|
| 51 |
50
|
3ad2ant2 |
|
| 52 |
|
eqid |
|
| 53 |
30 6 52
|
ringinvcl |
|
| 54 |
29 34 53
|
syl2anc |
|
| 55 |
1 41 4 42 43 47 20 51 54
|
mavmulass |
|
| 56 |
1 41 4 42 43 47
|
1mavmul |
|
| 57 |
40 55 56
|
3eqtr3d |
|
| 58 |
13 57
|
sylan9eqr |
|
| 59 |
12 58
|
impbida |
|