| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slesolex.a |
⊢ 𝐴 = ( 𝑁 Mat 𝑅 ) |
| 2 |
|
slesolex.b |
⊢ 𝐵 = ( Base ‘ 𝐴 ) |
| 3 |
|
slesolex.v |
⊢ 𝑉 = ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) |
| 4 |
|
slesolex.x |
⊢ · = ( 𝑅 maVecMul 〈 𝑁 , 𝑁 〉 ) |
| 5 |
|
slesolex.d |
⊢ 𝐷 = ( 𝑁 maDet 𝑅 ) |
| 6 |
|
slesolinv.i |
⊢ 𝐼 = ( invr ‘ 𝐴 ) |
| 7 |
|
simpl1 |
⊢ ( ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ) |
| 8 |
|
simpl2 |
⊢ ( ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) |
| 9 |
|
simp3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) |
| 10 |
9
|
anim1i |
⊢ ( ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) |
| 11 |
1 2 3 4 5 6
|
slesolinv |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) ) → 𝑍 = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) |
| 12 |
7 8 10 11
|
syl3anc |
⊢ ( ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ ( 𝑋 · 𝑍 ) = 𝑌 ) → 𝑍 = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) |
| 13 |
|
oveq2 |
⊢ ( 𝑍 = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) → ( 𝑋 · 𝑍 ) = ( 𝑋 · ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) ) |
| 14 |
|
simpr |
⊢ ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ CRing ) |
| 15 |
1 2
|
matrcl |
⊢ ( 𝑋 ∈ 𝐵 → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ V ) ) |
| 16 |
15
|
simpld |
⊢ ( 𝑋 ∈ 𝐵 → 𝑁 ∈ Fin ) |
| 17 |
16
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑁 ∈ Fin ) |
| 18 |
14 17
|
anim12ci |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
| 19 |
18
|
3adant3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) ) |
| 20 |
|
eqid |
⊢ ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) |
| 21 |
1 20
|
matmulr |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ CRing ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 22 |
19 21
|
syl |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) = ( .r ‘ 𝐴 ) ) |
| 23 |
22
|
oveqd |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝐼 ‘ 𝑋 ) ) = ( 𝑋 ( .r ‘ 𝐴 ) ( 𝐼 ‘ 𝑋 ) ) ) |
| 24 |
|
crngring |
⊢ ( 𝑅 ∈ CRing → 𝑅 ∈ Ring ) |
| 25 |
24
|
adantl |
⊢ ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) → 𝑅 ∈ Ring ) |
| 26 |
25 17
|
anim12ci |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 27 |
26
|
3adant3 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) ) |
| 28 |
1
|
matring |
⊢ ( ( 𝑁 ∈ Fin ∧ 𝑅 ∈ Ring ) → 𝐴 ∈ Ring ) |
| 29 |
27 28
|
syl |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝐴 ∈ Ring ) |
| 30 |
|
eqid |
⊢ ( Unit ‘ 𝐴 ) = ( Unit ‘ 𝐴 ) |
| 31 |
|
eqid |
⊢ ( Unit ‘ 𝑅 ) = ( Unit ‘ 𝑅 ) |
| 32 |
1 5 2 30 31
|
matunit |
⊢ ( ( 𝑅 ∈ CRing ∧ 𝑋 ∈ 𝐵 ) → ( 𝑋 ∈ ( Unit ‘ 𝐴 ) ↔ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
| 33 |
32
|
ad2ant2lr |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ) → ( 𝑋 ∈ ( Unit ‘ 𝐴 ) ↔ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ) |
| 34 |
33
|
biimp3ar |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑋 ∈ ( Unit ‘ 𝐴 ) ) |
| 35 |
|
eqid |
⊢ ( .r ‘ 𝐴 ) = ( .r ‘ 𝐴 ) |
| 36 |
|
eqid |
⊢ ( 1r ‘ 𝐴 ) = ( 1r ‘ 𝐴 ) |
| 37 |
30 6 35 36
|
unitrinv |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) → ( 𝑋 ( .r ‘ 𝐴 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝐴 ) ) |
| 38 |
29 34 37
|
syl2anc |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( .r ‘ 𝐴 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝐴 ) ) |
| 39 |
23 38
|
eqtrd |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝐼 ‘ 𝑋 ) ) = ( 1r ‘ 𝐴 ) ) |
| 40 |
39
|
oveq1d |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝐼 ‘ 𝑋 ) ) · 𝑌 ) = ( ( 1r ‘ 𝐴 ) · 𝑌 ) ) |
| 41 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 42 |
25
|
3ad2ant1 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑅 ∈ Ring ) |
| 43 |
17
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑁 ∈ Fin ) |
| 44 |
3
|
eleq2i |
⊢ ( 𝑌 ∈ 𝑉 ↔ 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
| 45 |
44
|
biimpi |
⊢ ( 𝑌 ∈ 𝑉 → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
| 46 |
45
|
adantl |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
| 47 |
46
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑌 ∈ ( ( Base ‘ 𝑅 ) ↑m 𝑁 ) ) |
| 48 |
2
|
eleq2i |
⊢ ( 𝑋 ∈ 𝐵 ↔ 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 49 |
48
|
biimpi |
⊢ ( 𝑋 ∈ 𝐵 → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 50 |
49
|
adantr |
⊢ ( ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 51 |
50
|
3ad2ant2 |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → 𝑋 ∈ ( Base ‘ 𝐴 ) ) |
| 52 |
|
eqid |
⊢ ( Base ‘ 𝐴 ) = ( Base ‘ 𝐴 ) |
| 53 |
30 6 52
|
ringinvcl |
⊢ ( ( 𝐴 ∈ Ring ∧ 𝑋 ∈ ( Unit ‘ 𝐴 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐴 ) ) |
| 54 |
29 34 53
|
syl2anc |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝐼 ‘ 𝑋 ) ∈ ( Base ‘ 𝐴 ) ) |
| 55 |
1 41 4 42 43 47 20 51 54
|
mavmulass |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 ( 𝑅 maMul 〈 𝑁 , 𝑁 , 𝑁 〉 ) ( 𝐼 ‘ 𝑋 ) ) · 𝑌 ) = ( 𝑋 · ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) ) |
| 56 |
1 41 4 42 43 47
|
1mavmul |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 1r ‘ 𝐴 ) · 𝑌 ) = 𝑌 ) |
| 57 |
40 55 56
|
3eqtr3d |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( 𝑋 · ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) = 𝑌 ) |
| 58 |
13 57
|
sylan9eqr |
⊢ ( ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) ∧ 𝑍 = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) → ( 𝑋 · 𝑍 ) = 𝑌 ) |
| 59 |
12 58
|
impbida |
⊢ ( ( ( 𝑁 ≠ ∅ ∧ 𝑅 ∈ CRing ) ∧ ( 𝑋 ∈ 𝐵 ∧ 𝑌 ∈ 𝑉 ) ∧ ( 𝐷 ‘ 𝑋 ) ∈ ( Unit ‘ 𝑅 ) ) → ( ( 𝑋 · 𝑍 ) = 𝑌 ↔ 𝑍 = ( ( 𝐼 ‘ 𝑋 ) · 𝑌 ) ) ) |