| Step |
Hyp |
Ref |
Expression |
| 1 |
|
slesolex.a |
|
| 2 |
|
slesolex.b |
|
| 3 |
|
slesolex.v |
|
| 4 |
|
slesolex.x |
|
| 5 |
|
slesolex.d |
|
| 6 |
|
eqid |
|
| 7 |
|
eqid |
|
| 8 |
|
crngring |
|
| 9 |
8
|
adantl |
|
| 10 |
9
|
3ad2ant1 |
|
| 11 |
1 2
|
matrcl |
|
| 12 |
11
|
simpld |
|
| 13 |
12
|
adantr |
|
| 14 |
13
|
3ad2ant2 |
|
| 15 |
9 13
|
anim12ci |
|
| 16 |
15
|
3adant3 |
|
| 17 |
1
|
matring |
|
| 18 |
16 17
|
syl |
|
| 19 |
|
eqid |
|
| 20 |
|
eqid |
|
| 21 |
1 5 2 19 20
|
matunit |
|
| 22 |
21
|
bicomd |
|
| 23 |
22
|
ad2ant2lr |
|
| 24 |
23
|
biimp3a |
|
| 25 |
|
eqid |
|
| 26 |
|
eqid |
|
| 27 |
19 25 26
|
ringinvcl |
|
| 28 |
18 24 27
|
syl2anc |
|
| 29 |
3
|
eleq2i |
|
| 30 |
29
|
biimpi |
|
| 31 |
30
|
adantl |
|
| 32 |
31
|
3ad2ant2 |
|
| 33 |
1 4 6 7 10 14 28 32
|
mavmulcl |
|
| 34 |
33 3
|
eleqtrrdi |
|
| 35 |
1 2 3 4 5 25
|
slesolinvbi |
|
| 36 |
35
|
adantr |
|
| 37 |
36
|
biimprd |
|
| 38 |
37
|
impancom |
|
| 39 |
34 38
|
rspcimedv |
|
| 40 |
39
|
pm2.43i |
|