Metamath Proof Explorer


Theorem mavmulcl

Description: Multiplication of an NxN matrix with an N-dimensional vector results in an N-dimensional vector. (Contributed by AV, 6-Dec-2018) (Revised by AV, 23-Feb-2019) (Proof shortened by AV, 23-Jul-2019)

Ref Expression
Hypotheses mavmulcl.a A=NMatR
mavmulcl.m ×˙=RmaVecMulNN
mavmulcl.b B=BaseR
mavmulcl.t ·˙=R
mavmulcl.r φRRing
mavmulcl.n φNFin
mavmulcl.x φXBaseA
mavmulcl.y φYBN
Assertion mavmulcl φX×˙YBN

Proof

Step Hyp Ref Expression
1 mavmulcl.a A=NMatR
2 mavmulcl.m ×˙=RmaVecMulNN
3 mavmulcl.b B=BaseR
4 mavmulcl.t ·˙=R
5 mavmulcl.r φRRing
6 mavmulcl.n φNFin
7 mavmulcl.x φXBaseA
8 mavmulcl.y φYBN
9 1 2 3 4 5 6 7 8 mavmulval φX×˙Y=iNRjNiXj·˙Yj
10 ringcmn RRingRCMnd
11 5 10 syl φRCMnd
12 11 adantr φiNRCMnd
13 6 adantr φiNNFin
14 5 ad2antrr φiNjNRRing
15 1 3 matbas2 NFinRRingBN×N=BaseA
16 6 5 15 syl2anc φBN×N=BaseA
17 7 16 eleqtrrd φXBN×N
18 elmapi XBN×NX:N×NB
19 17 18 syl φX:N×NB
20 19 ad2antrr φiNjNX:N×NB
21 simpr φiNiN
22 21 adantr φiNjNiN
23 simpr φiNjNjN
24 20 22 23 fovcdmd φiNjNiXjB
25 elmapi YBNY:NB
26 8 25 syl φY:NB
27 26 ad2antrr φiNjNY:NB
28 27 23 ffvelcdmd φiNjNYjB
29 3 4 ringcl RRingiXjBYjBiXj·˙YjB
30 14 24 28 29 syl3anc φiNjNiXj·˙YjB
31 30 ralrimiva φiNjNiXj·˙YjB
32 3 12 13 31 gsummptcl φiNRjNiXj·˙YjB
33 32 ralrimiva φiNRjNiXj·˙YjB
34 eqid iNRjNiXj·˙Yj=iNRjNiXj·˙Yj
35 34 fmpt iNRjNiXj·˙YjBiNRjNiXj·˙Yj:NB
36 3 fvexi BV
37 elmapg BVNFiniNRjNiXj·˙YjBNiNRjNiXj·˙Yj:NB
38 36 6 37 sylancr φiNRjNiXj·˙YjBNiNRjNiXj·˙Yj:NB
39 35 38 bitr4id φiNRjNiXj·˙YjBiNRjNiXj·˙YjBN
40 33 39 mpbid φiNRjNiXj·˙YjBN
41 9 40 eqeltrd φX×˙YBN